
Towards a Realistic Decentralized Naive Bayes
with Differential Privacy⋆

Lodovico Giaretta1[0000−0002−0223−8907], Thomas
Marchioro2[0000−0003−3353−102X], Evangelos Markatos2[0000−0003−3563−7733], and

Sarunas Girdzijauskas1[0000−0003−4516−7317]

1 KTH Royal Institute of Technology,
Isafjordsgatan 22, 16440 Kista, Sweden
{lodovico,sarunasg}@kth.se

2 Foundation for Research and Technology Hellas,
Nikolaou Plastira 100, 70013 Heraklion, Greece
{marchiorot,markatos}@ics.forth.gr

Abstract. This is an extended version of our work in [16]. In this paper,
we introduce two novel algorithms to collaboratively train Naive Bayes
models across multiple private data sources: Federated Naive Bayes and
Gossip Naive Bayes. Instead of directly providing access to their data,
the data owners compute local updates that are then aggregated to build
a global model. In order to also prevent indirect privacy leaks from the
updates or from the final model, our algorithms protect the exchanged
information with differential privacy. We experimentally evaluate our
proposed approaches, examining different scenarios and focusing on po-
tential real-world issues, such as different data owner offering different
amounts of data or requesting different levels of privacy. Our results show
that both Federated and Gossip Naive Bayes achieve similar accuracy to
a “vanilla” Naive Bayes while maintaining reasonable privacy guarantees,
while being extremely robust to heterogeneous data owners.

Keywords: Federated learning · Gossip Learning · Differential privacy
· Naive Bayes.

1 Introduction

Machine learning has reached unprecedented popularity in recent years, its suc-
cesses enabling previously unthinkable digital services. However, training ma-
chine learning models typically requires the collection, storage and processing
of large amounts of personal and potentially sensitive data, causing privacy and
scalability issues.

⋆ This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant agreement No
813162: RAIS – Real-time Analytics for the Internet of Sports. The content of this
paper reflects the views only of their author(s). The European Commission/Research
Executive Agency are not responsible for any use that may be made of the informa-
tion it contains.

2 L. Giaretta, T. Marchioro, et al.

Thence, a variety of approaches have been developed to train machine learn-
ing models on decentralized, private data. Among these, the most popular is
federated learning [17], which allows multiple data owners to cooperatively train
a model without having to transfer or disclose their data. The training procedure
under federated learning requires the data owners to iteratively compute local
model updates and share them with a central aggregator. The aggregator, in
turn, combines such updates to produce a global model, containing information
from all data sources.

One limitation of federated learning is its requirement for a central, trusted
entity to perform the aggregation step. Different approaches have been proposed
to overcome this issue, the most notable being gossip learning [19], which instead
employs peer-to-peer communication protocols to perform the aggregation.

However, federated and gossip learning alone cannot shield from all possible
privacy leaks [27, 21]. Thus, they are often combined with differential privacy
[11, 24, 7], a family of techniques to inject properly calibrated noise into the
outputs shared by the data owners. When properly implemented, differential
privacy provides strong mathematical guarantees that no private information
can be inferred from the values that are shared.

While substantial efforts have been devolved to study differentially-private
federated learning on deep models, in [16] we argued that, in many practical
applications, simpler yet robust models like Naive Bayes classifiers are preferable.
Therefore, we proceeded to provide the first (to our knowledge) implementation
and evaluation of Federated Naive Bayes with differential privacy, showing that
in most cases it can achieve nearly the same performance as a traditional, non-
data-private counterpart.

In this extended version of [16], we provide additional algorithms and exper-
imental results, with the focus on enabling certain realistic scenarios that were
not discussed in the original work.

First, we experimentally evaluate cases where different data owners own sub-
stantially different amounts of data points or require different degrees of privacy.
We provide insights into how these metrics affect the amount of noise injected by
the data owners, and we show that Federated Naive Bayes is extremely robust
to variable size of the data partitions and privacy budget distribution.

Additionally, we propose and evaluate Gossip Naive Bayes, a counterpart
to Federated Naive Bayes that uses iterative gossip-based communications, re-
placing the central aggregator of the latter. Our results show that Gossip Naive
Bayes converges to the same accuracy as Federated Naive Bayes in just a few
iterations of the protocol, providing a high degree of scalability and privacy in
fully-decentralized scenarios.

2 Background, notation, and terminology

2.1 Naive Bayes

Naive Bayes is well established as a simple-yet-effective machine learning algo-
rithm for classification. Naive Bayes classifies data points according to bayesian

Towards a Realistic Decentralized Naive Bayes with Differential Privacy 3

Symbol Description

x Random variable
x Observation of x

x(i) Samples owned by i-th node
xj j-th sample
xϕ Feature ϕ of x

y(i) Labels owned by i-th node
ny Count of data points in class y
mxϕy Count of data points with categorical feature ϕ equal to xϕ

µϕy Average of numerical feature ϕ for class y
µϕy Standard deviation of numerical feature ϕ for class y
X Set of possible values of x
F Set of features
Fcat Set of categorical features
Fnum Set of numerical features
Nnodes Number of nodes

N
(i)
samples Number of data points owned by the i-th node

Table 1. Notation used in the paper.

inference, following the maximum a posteriori probability (MAP) criterion:

ŷ(x) = argmax
y∈Y

Pr[y = y|x = x]

= argmax
y∈Y

Pr[y = y] Pr[x = x|y = y].
(1)

An underlying assumption of this algorithm is that the features x1, . . . ,xΦ are
independent when conditioned with respect to the class variable Y . The MAP
criterion under such assumption becomes:

ŷ(x) = argmax
y∈Y

Pr[y = y]
∏
ϕ∈F

Pr[xϕ = xϕ|y = y]. (2)

Equation (2) is the criterion adopted by Naive Bayes to predict the most likely
class ŷ ∈ Y to which a sample x ∈ X belongs. However, the a priori probability
distribution of the classes Pr[y = y] and the conditional likelihood of each feature
Pr[xϕ = xϕ|y = y] are unknown. “Training” a Naive Bayes classifier consists
of estimating such probabilities from the training dataset Dtrain, which is a
collection of example/class pairs (xj , yj) ∈ X ×Y. The prior probabilities of the
classes are estimated as the normalized frequency for each class, i.e.,

py =
ny∑

y′∈Y ny′
, with ny =

|Dtrain|∑
j=1

χ{yj = y}, (3)

where χ denotes the indicator function. Simply put, ny is the number of training
examples that belong to class y. The way conditional likelihoods are estimated
depends on the nature of the features.

4 L. Giaretta, T. Marchioro, et al.

– Categorical features: For categorical features, the most common approach
is again to compute the normalized frequency, this time normalized with
respect to the categories:

pxϕ|y =
mxϕy∑

x′
ϕ∈Xϕ

mx′
ϕy

, with mxϕy =

|Dtrain|∑
j=1

χ{xjϕ = xϕ ∧ yj = y}. (4)

– Numerical features: For numerical features, the conditional likelihood
Pr[xϕ = xϕ|y = y] is proportional to a probability density function (PDF)
ρxϕ|y in eq. (2). A PDF cannot be estimated by counting occurrences, since
the number of possible values is infinite. Instead, the most common approach
is to assume that the underlying PDF follows a certain parametric distribu-
tion. The usual choice is a normal distribution, in which case the algorithm
takes the name of Gaussian Naive Bayes. A normal distribution is charac-
terized by its mean µϕy and variance σ2

ϕy, which are estimated as follows:

µϕy =
1

ny

∑
j:yj=y

xjϕ, σ2
ϕy =

1

ny − 1

∑
j:yj=y

(xjϕ − µϕy)
2
. (5)

The estimate of the probability density for xϕ, conditioned w.r.t. class y, is
computed as

ρxϕ|y(xϕ|y) =
1√

2πσ2
ϕy

exp

(
− (xϕ − µϕy)

2

2σ2
ϕy

)
. (6)

Practical computation and numerical stability Computing the posterior proba-
bilities according to eq. (2) is problematic in terms of numerical stability, as the
products tends to quickly vanish for a large number of features. For this reason,
we calculate the posterior log-probabilities, which preserve the argmax value.
Log-probabilities allow to rewrite products as sums:

ŷ(x) = argmax
y∈Y

log

py
∏
ϕ∈F

pxϕ|y

 (7)

= argmax
y∈Y

log py +
∑
ϕ∈F

log pxϕ|y (8)

The prior log-probabilities can be simplified as

log py = log

(
ny∑

y′∈Y ny′

)
= log ny − log

∑
y′∈Y

ny′

 . (9)

The normalization term log
(∑

y′∈Y ny′

)
in eq. (9) is common to all the classes,

and can thus be neglected. Likewise, for categorical features, the conditional

Towards a Realistic Decentralized Naive Bayes with Differential Privacy 5

log-likelihoods become

log pxϕ|y = log

(
mxϕy∑

x′
ϕ∈Xϕ

mx′
ϕy

)
= logmxϕy − log ny. (10)

For numerical features, the conditional log-likelihoods are proportional to

log pxϕ|y ∝ − log σϕy −
(xϕ − µϕy)

2

2σ2
ϕy

. (11)

The normalization terms can be neglected when computing the argmax, since
they are common to all classes.

Algorithm 1 Naive Bayes prediction

Require: Sample x′, prior counts n, conditional counts m, means µ and standard
deviations σ
for all classes y = 1, . . . , |Y| do

scorey(x′)← log(ny) ▷ Initialize the scores with the log of the prior counts
for all categorical features ϕ ∈ Fcat do

scorey(x′)← scorey(x′) + log(mx′
ϕ
y)

end for
for all numerical features ϕ ∈ Fnum do

scorey(x′)← scorey(x′)− log(σϕy) +
(x′

ϕ − µϕy)2

2σ2
ϕy

end for
end for
ȳ′ ← ArgMaxyscore(x′)
return predicted class ȳ′

2.2 Differential privacy

Introduced by Dwork et al. [6], differential privacy is an umbrella term covering
different techniques to protect the output of an aggregation algorithm (hence-
forth, aggregated query) against membership inference. Differentially private
mechanisms perturb the aggregated queries with noise, in a way that makes it
hard to deduce whether a certain data point was included in the aggregation.
The level of protection provided by differential privacy is determined by a pa-
rameter ε, called privacy budget. A lower privacy budget implies a higher level
of privacy, but also requires a higher amount of noise. Formally, a randomized
query q̃ satisfies ε-differential privacy if for all adjacent3 datasets D,D′, it holds

Pr[q̃(D) ∈ O] ≤ εPr[q̃(D′) ∈ O], ∀O ⊆ Q. (12)

3 Two datasets are adjacent if they differ by exactly one data point.

6 L. Giaretta, T. Marchioro, et al.

Equation (12) means that the probability for the query output falling in any
subset O of the output space Q should not change “too much” if one data point
is replaced.

Laplace mechanism. In our algorithm, we use the Laplace mechanism to enforce
differential privacy on aggregated queries. This mechanism perturbs the query
with additive noise that follows a Laplace distribution:

Lε(q(D)) = q(D) +Ξ, Ξ ∼ Lap

(
0,

∆q

ε

)
. (13)

As apparent from eq. (13), the scale of the noise is proportional to ∆r and
inversely proportional to the privacy budget ε. The value ∆q is called sensitivity
of the query, and can be defined in two ways:

– global sensitivity: ∆q = maxD,D′ |q(D)− q(D′)|;
– local sensitivity: ∆q(D) = maxD′:D′=D\{xj},xj∈D |q(D)− q(D′)|.

Both notions of sensitivity guarantee that differential privacy is satisfied. How-
ever, when local sensitivity is used, the level of noise to be applied depends on
the dataset D. With global sensitivity, the noise is determined just by the query
and the privacy budget.

Within the scope of our work, the Laplace mechanism is applied to two
queries: Sum queries, and Count queries. A Count query simply counts how
many elements satisfy a certain condition. When replacing an element in the
dataset, the count can change by at most 1, meaning that the global sensitivity
is ∆q = 1 for Count queries. Sum queries, instead, require to add all elements
satisfying the condition. Unless the values are in a limited range, the maximum
change in a Sum query cannot be determined in advance. Therefore, this must
be estimated as a local sensitivity.

Properties In the design of Federated and Gossip Naive Bayes, we make use of
two well-known properties of differential privacy:

– Sequential composition: If ℓ independent random queries q̃1(D), . . . , q̃ℓ(D)
are computed on the same data D under ε

ℓ -differential privacy, then any
function of them g(q̃1(D), . . . , q̃ℓ(D)) satisfies ε-differential privacy.

– Parallel composition: If ℓ independent random queries q̃1(D(1)), . . . , q̃ℓ(D(ℓ))
are computed on disjoint subsets of D under ε-differential privacy, then any
function of them g(q̃1(D(1)), . . . , q̃ℓ(D(ℓ))) satisfies ε-differential privacy.

2.3 Federated and gossip learning

Several techniques have been proposed to perform distributed machine learning
on private, horizontally-partitioned data sources. The most common and well-
studied approach is federated learning [17]. Being typically deployed with deep
learning models, federated learning consists of an iterative approach. In each

Towards a Realistic Decentralized Naive Bayes with Differential Privacy 7

iteration, the devices holding the private data compute a gradient based on a
batch of local data. These local gradients are then sent to a central entity, which
aggregates them into a global gradient, modifies the model weights accordingly,
and distributes the updated model to all participants for the next iteration.

The need for a central aggregator may limit the scalability of federated learn-
ing and introduce robustness and trust issues [1]. Gossip learning [19, 8] is a
less-studied approach that overcomes these issues through decentralization and
gossip communication protocols [13]. Data-owning devices directly share their
locally-updated models with each other in a peer-to-peer fashion. More specifi-
cally, at regular intervals, each device will produce a new model by merging the
two most recent models received from peers and then performing a local training
step. This new model is then forwarded to a randomly-chosen peer.

Both federated and gossip learning can collaboratively train a model without
explicit data sharing among participants. However, neither of them is designed
to prevent implicit data leaks. These may occur during training, through the
models or gradients shared in each iteration [27] or afterwards, through the final
model produced by the process [21]. Therefore, previous works have integrated
differential privacy with federated learning to protect from these leaks. Differen-
tial privacy can be applied on each local gradient before sharing [24], to ensure
the privacy of individual data points, or within the central aggregator [7], thus
hiding the identity of whole data owners participating in the protocol.

Both federated and gossip learning have been studied mostly in the context
of deep learning models, where the iterative gradient-based approaches described
above are necessary. Naive Bayes classifiers, on the other hand, are built based
on simple statistics that can be computed by a single pass over the dataset.
Furthermore, the focus of both approaches is typically on massively-distributed
scenarios, with large number of devices each holding few data points. Fewer
works [7, 3] have considered situations where a relatively small number of data
brokers each contribute many data points from different individuals.

3 Algorithms

In this section, we describe our design for Federated and Gossip Naive Bayes.
The setting is similar for both algorithms, and can be summarized as follows.
Each data owner (henceforth, node) i ∈ {1, . . . , Nnodes} has a local dataset
D(i) = (x(i), y(i)) of multiple labeled data points. Nodes are unwilling to share
their data in plain text, but are willing to participate in the training process
of a Naive Bayes model by sharing the required dataset statistics, as long as
the information they disclose does not leak information about individual data
points. In other words, the information disclosed by each node should satisfy the
following property:

For all labeled data points (x
(i)
j , y

(i)
j) in a data partition D(i), it should not

be possible to infer whether (x
(i)
j , y

(i)
j) is present in D(i) from the disclosed

information.

8 L. Giaretta, T. Marchioro, et al.

This guarantees resilience against membership inference and can be achieved by
protecting disclosed information with differential privacy.

In both Federated and Gossip Naive Bayes, the training process starts with
all nodes independently computing their differentially-private model statistics,
which we refer to as local updates. Then, these updates are aggregated to esti-
mate the complete dataset statistics required to construct a Naive Bayes classi-
fier, as introduced in section 2.1. However, the way this aggregation is performed
differs in the two approaches. Federated Naive Bayes relies on a central aggre-
gator, which handles the collection and merging of the updates. In Gossip Naive
Bayes, instead, the updates are exchanges between nodes in a peer-to-peer fash-
ion.

(a)

Node 1:

D(1) = (x(1), y(1))

Node 2:

D(2) = (x(2), y(2))

Node 3:

D(3) = (x(3), y(3))

Node 4:

D(4) = (x(4), y(4))

Central aggregator
computes (n̂, m̂, µ̂, σ̂)

Local
update

Local
update

Local
update

Local
update

(b)

Node 1:

D(1) = (x(1), y(1))

Node 2:

D(2) = (x(2), y(2))

Node 3:

D(3) = (x(3), y(3))

Node 4:

D(4) = (x(4), y(4))

R
ec
ei
ve

go
ss
ip

u
p
d
at
e
θ
(4
)

re
cv
[τ
]

Send gossip

update θ(4)[τ]

Fig. 1. Settings for Federated Naive Bayes (a) and Gossip Naive Bayes (b).

3.1 Local Update Computation

The local updates are essentially a collection of aggregated parameters that
should allow to compute the final model, protected under differential privacy.
More specifically, each update is a noisy version of the tuple (n(i), m(i), S(i),
Q(i)), where these parameters are defined as follows:

– n(i) is a vector of prior counts n
(i)
y for each class y = 1, . . . , |Y|, computed

according to eq. (3);

– m(i) contains the countsm
(i)
xϕy of each category xϕ for each categorical feature

ϕ ∈ Fcat for each class, computed according to eq. (4);
– S(i) is a matrix of sums

S
(i)
ϕy =

∑
j:y

(i)
j =y

x
(i)
jϕ (14)

Towards a Realistic Decentralized Naive Bayes with Differential Privacy 9

computed for each numerical feature ϕ ∈ Fnum and for each class y;
– Q(i) is a matrix of sums of squares

Q
(i)
ϕy =

∑
j:y

(i)
j =y

(
x
(i)
jϕ

)2
(15)

computed for each numerical feature ϕ ∈ Fnum and for each class y.

All the parameters are perturbed with noise in order to achieve differential
privacy. The privacy budget must be distributed equally between the different
queries, following the sequential and parallel composition properties of differen-
tial privacy (as described in section 2.2). According to parallel composition, the
same query executed on different classes counts as a single query from the stand-
point of privacy budget distribution. This is due to the fact that such queries
are executed on disjoint subsets of the local dataset D(i). On the other hand,
privacy budget must be equally distributed between multiple queries that affect
the same class. There is 1 such query to compute n(i), |Fcat| queries to com-
pute m(i) for all categorical features, and 2|Fnum| queries to compute S(i) and
Q(i). Hence, each parameter (n(i), m(i), S(i), Q(i)) is perturbed with the Laplace
mechanism with privacy budget

ε′ =
ε

1 + |Fcat|+ 2|Fnum|
, (16)

yielding (ñ(i), m̃(i), S̃(i), Q̃(i)). The values ñ
(i)
y and m̃

(i)
xϕy are computed via

Count queries, thus the sensitivity is ∆q = 1. The values S
(i)
ϕy and Q

(i)
ϕy, instead,

are computed via Sum queries, meaning that their sensitivity is estimated from
the local data, and varies between different features and classes: it is ∆q =

max |x(i)
jϕ | for S

(i)
ϕy , and ∆q = max |x(i)

jϕ |2 for Q
(i)
ϕy. The randomization of each

query via the Laplace mechanism is done by sampling independent values from
a Laplace distribution with mean 0 and scale ∆q/ε, and adding such values to
each original parameter. The overall procedure is described in algorithm 2.

3.2 Federated Aggregation

In the case of Federated Naive Bayes, once the local updates (ñ(i), m̃(i), S̃(i),
Q̃(i)) are computed by all nodes i = 1, . . . , Nnodes, these are collected by the
central aggregator and merged into the final model.

A Naive Bayes model requires the overall prior counts n, the category counts
m, and the parameters µ and σ to define a normal distribution for numerical
features. Prior and category counts are trivially estimated as

n̂ =

Nnodes∑
i=1

ñ(i), m̂ =

Nnodes∑
i=1

m̃(i). (17)

Since n̂ and m̂ are collections of scalars, when we say that we “sum” them we
imply that we perform an element-wise sum across the nodes dimension. For

10 L. Giaretta, T. Marchioro, et al.

Algorithm 2 Local update computed by the i-th node

Require: Local data D(i) = (x(i), y(i)), privacy budget ε

ε′ ← ε

1 + |Fcat|+ 2|Fnum|
▷ Allocate the privacy budget among the queries

for all classes y = 1, . . . , |Y| do
n
(i)
y ← Countj({j : y

(i)
j = y}) ▷ Count samples from class y

for all categorical features ϕ ∈ Fcat do
for all categories xϕ = 1, . . . , |Xϕ| do

m
(i)
xϕy ← Countj({j : x

(i)
jϕ = xϕ ∧ y

(i)
j = y}) ▷ Count samples from class y

with feature ϕ equal to xϕ

ξ ← RandomSample(Lap
(
0, 1

ε′

)
) ▷ Sample Laplace noise

m̃
(i)
xϕy ← m

(i)
xϕy + ξ ▷ Add the noise to the query

end for
end for
for all numerical features ϕ ∈ Fnum do

S
(i)
ϕy ← Sumj({x(i)

jϕ : y
(i)
j = y})

ξ ← RandomSample(Lap
(

0,
max |xjϕ|

ε′

)
)

S̃
(i)
ϕy ← S

(i)
ϕy + ξ

Q
(i)
ϕy ← Sumj({(x(i)

jϕ)2 : y
(i)
j = y})

ξ ← RandomSample(Lap

(
0,

max(x
(i)
jϕ

)2

ε′

)
)

Q̃
(i)
ϕy ← Q

(i)
ϕy + ξ

end for
end for
return (ñ(i), m̃(i), S̃(i), Q̃(i))

Towards a Realistic Decentralized Naive Bayes with Differential Privacy 11

instance, this means that the collection m̂ contains the counts for all categories
of all features for every class, which are obtained by summing those of each
node. Regarding the numerical features, the central aggregator first estimates
the overall sums and sums of squares:

Ŝ =

Nnodes∑
i=1

S̃(i), Q̂ =

Nnodes∑
i=1

Q̃(i). (18)

These are leveraged to estimate the means and standard deviations of the fea-
tures. For each feature and class, the mean value of the feature within the class
can be estimated simply dividing the sum by the count, using the definition of
sample average

µ̂ϕy =
Ŝϕy

n̂y
. (19)

Typically standard deviation is estimated by computing the root mean square
difference between samples xjϕ from class y and µϕy, as in eq. (5). However,
this would require an additional exchange with the nodes, as they would need to
first receive the aggregated µ̂ϕy to be able to compute the sum of (xjϕ − µ̂ϕy)

2

terms. Instead of doing so, we observe that the variance of a random variable z
can be expressed as the difference between the second moment and the squared
mean, i.e. Var(z) = E[z2]− (E[z])2. The second moment of each feature can be
estimated as

ς̂ϕy =
Q̂ϕy

n̂y
, (20)

and thus the variance is approximated as

σ̂2
ϕy = ς̂ϕy − µ̂2

ϕy =
Q̂ϕy

n̂y
− µ̂2

ϕy. (21)

Indeed, this is not the most accurate approximation, and contrarily to eq. (5), it
can yield negative values. When that happens, we replace negative values with
a small positive value, namely 10−6, before taking the square root to obtain
the estimated standard deviation. We do the same with prior and categorical
counts, as in some instances the noise can turn small positive counts into negative
values, especially for categorical ones. The central aggregation is summarized by
algorithm 3.

Online updates In many practical cases, the exchanges between different nodes
and the central aggregator will happen asynchronously. Furthermore, new nodes
may join the collaborative training after the model has already been computed.
In such cases, the simplest solution is to keep the collection of submitted updates
(ñ(i), m̃(i), S̃(i), Q̃(i)) by each users i = 1, . . . , Nnodes, and just recompute the
parameters adding the new updates. However, in the event that the complete
collection of updates is not available, it is still possible to update the model with

12 L. Giaretta, T. Marchioro, et al.

Algorithm 3 Central aggregation

Require: Collection of local updates {(ñ(i), m̃(i), S̃(i), Q̃(i)), i = 1, . . . , Nnodes}
n̂← Sumi({ñ(i), i = 1, . . . , Nnodes})
m̂← Sumi({m̃(i), i = 1, . . . , Nnodes})
Ŝ ← Sumi({S̃(i), i = 1, . . . , Nnodes})
Q̂← Sumi({Q̃(i), i = 1, . . . , Nnodes})
for all classes y = 1, . . . , |Y| do

for all numerical features ϕ ∈ Fnum do

µ̂ϕy ←
Ŝϕy

n̂y

σ̂ϕy ←

√
Q̂ϕy

n̂y
− µ̂2

ϕy

end for

end for
return (n̂, m̂, µ̂, σ̂)

a new update (ñ(Nnodes+1), m̃(Nnodes+1), S̃(Nnodes+1), Q̃(Nnodes+1)). The parameters
n̂ and m̂ can be updated as

n̂[τ + 1] = n̂[τ] + ñ(Nnodes+1), m̂[τ + 1] = m̂[τ] + m̃(Nnodes+1) (22)

where the τ temporal index is simply used to distinguish between the new and
old parameters. The new mean values µ̂ϕy[τ+1] are a weighted average computed

between the old means µ̂ϕy[τ] and the received sums S̃
(Nnodes+1)
ϕy

µ̂ϕy[τ + 1] =
n̂[τ]

n̂[τ + 1]
µ̂ϕy[τ] +

1

n̂[τ + 1]
S̃
(Nnodes+1)
ϕy . (23)

The same holds for the second moments and the newly received sums of squares,
for which it holds

ς̂ϕy[τ + 1] =
n̂[τ]

n̂[τ + 1]
ς̂ϕy[τ] +

1

n̂[τ + 1]
Q̃

(Nnodes+1)
ϕy . (24)

If also the previous value of ς̂ϕy[τ] was not kept, it can be retrieved from the
standard deviation as ς̂ϕy[τ] = (σ̂ϕy[τ])

2 + (µ̂ϕy[τ])
2.

3.3 Gossip Naive Bayes

While in Federated Naive Bayes the central aggregator can trivially compute the
sum (n̂, m̂, Ŝ, Q̂) of the local updates (ñ(i), m̃(i), S̃(i), Q̃(i)), in Gossip Naive
Bayes this is not possible. Instead, each node maintains a local estimates (n̂(i)[τ],
m̂(i)[τ], Ŝ(i)[τ], Q̂(i)[τ]) of the global statistics, which is updated and shared with
peers in each iteration τ of the gossiping process.

To do this, each node i keeps track of the last and next-to-last estimates

received from other peers, notated as (n̂
(i)
recv[τ], m̂

(i)
recv[τ], Ŝ

(i)
recv[τ], Q̂

(i)
recv[τ]) and

Towards a Realistic Decentralized Naive Bayes with Differential Privacy 13

(n̂
(i)
prev[τ], m̂

(i)
prev[τ], Ŝ

(i)
prev[τ], Q̂

(i)
prev[τ]) respectively. At regular intervals, every

node performs one gossiping iteration by computing each component θ̂(i)[τ] in
the local estimate (n̂(i)[τ], m̂(i)[τ], Ŝ(i)[τ], Q̂(i)[τ]), based on the corresponding
local update θ̃(i) and the corresponding values in the latest two estimates received
from peers, as

θ̂(i)[τ] = θ̂(i)prev[τ] + θ̂(i)recv[τ] + θ̃(i) (25)

The node then sends its updated estimate to a randomly-chosen peer in the
network.

To gain an intuition of this update rule, it is useful to look at the system not
from the perspective of the nodes, but rather of the estimates themselves. These
can be seen as acting like random walks over the network of nodes. Disregarding
the first right-hand side term, eq. (25) shows that, at each step of its random
walk, the estimate adds to its own values the local updates of the currently-
visited node. After T steps, the estimate would have visited each node on average
T/Nnodes times, and thus with a sufficiently large T its values would converge
to the correct (n̂, m̂, Ŝ, Q̂), multiplied by a factor of T/Nnodes. This factor
would then disappear when using the estimate to build a Naive Bayes classifier
as explained in section 2.1.

With such behaviour, O(Nnodes) gossiping steps would be necessary to ensure
that the latest estimate at each node has converged to the correct values, which
would not be scalable. Thus, the first term in eq. (25) is introduced, which brings
the requirement down to O(logNnodes). Intuitively, it allows each estimate to not
only visit the current node and learn about its local update, but also “meet”
the estimate that last visited the current node and learn of all the local updates
that that estimate had previously witnessed. As that previous estimate will have
typically visited the node no more than a few iterations priors, this amounts to
an almost doubling of the number of local updates contributing to the estimate.

Algorithm 4 Gossip aggregation at the i-th node

Require: Local update (n̂(i)[τ], m̂(i)[τ], Ŝ(i)[τ], Q̂(i)[τ]), last two estimates received

from peers (t
(i)
recv[τ], n̂

(i)
recv[τ], m̂

(i)
recv[τ], Ŝ

(i)
recv[τ], Q̂

(i)
recv[τ]) and (t

(i)
prev[τ], n̂

(i)
prev[τ],

m̂
(i)
prev[τ], Ŝ

(i)
prev[τ], Q̂

(i)
prev[τ])

t(i)[τ]← t
(i)
recv[τ] + 1

t
(i)
tot[τ]← t

(i)
prev[τ] + t

(i)
recv[τ] + 1

n̂(i)[τ]← t
(i)
prev[τ]

t
(i)
tot[τ]

n̂
(i)
prev[τ] + t

(i)
recv[τ]

t
(i)
tot[τ]

n̂
(i)
recv[τ] + 1

t
(i)
tot[τ]

ñ(i)

m̂(i)[τ]← t
(i)
prev[τ]

t
(i)
tot[τ]

m̂
(i)
prev[τ] + t

(i)
recv[τ]

t
(i)
tot[τ]

m̂
(i)
recv[τ] + 1

t
(i)
tot[τ]

m̃(i)

Ŝ(i)[τ]← t
(i)
prev[τ]

t
(i)
tot[τ]

Ŝ
(i)
prev[τ] + t

(i)
recv[τ]

t
(i)
tot[τ]

Ŝ
(i)
recv[τ] + 1

t
(i)
tot[τ]

S̃(i)

Q̂(i)[τ]← t
(i)
prev[τ]

t
(i)
tot[τ]

Q̂
(i)
prev[τ] + t

(i)
recv[τ]

t
(i)
tot[τ]

Q̂
(i)
recv[τ] + 1

t
(i)
tot[τ]

Q̃(i)

return new local estimate (t(i)[τ], n̂(i)[τ], m̂(i)[τ], Ŝ(i)[τ], Q̂(i)[τ])

14 L. Giaretta, T. Marchioro, et al.

This fast aggregation of many local updates also brings an issue: the mag-
nitude of the components in the estimate can quickly grow, leading to a loss of
floating point precision after just a few gossiping steps. Thus, we include with
each estimate a step counter t, which is increased with every node visited by
the estimate, and which is used as a normalization factor to maintain all scalars
within a constant range. Thus, eq. (25) becomes

θ̂(i)[τ] =
t
(i)
prev[τ]

t
(i)
tot[τ]

θ̂(i)prev[τ] +
t
(i)
recv[τ]

t
(i)
tot[τ]

θ̂(i)recv[τ] +
1

t
(i)
tot[τ]

θ̃(i) (26)

where t
(i)
tot[τ] = t(i)prev[τ] + t(i)recv[τ] + 1 (27)

Algorithm 4 shows the pseudocode for this aggregation step, while algorithm 5
presents a high-level view of the full gossiping protocol performed by each node.

Algorithm 5 Overall gossip protocol at the i-th node

Require: local dataset D(i), gossiping delay ∆

θ̃(i) ← ComputeLocalUpdate(D(i)) ▷ (ñ(i), m̃(i), S̃(i), Q̃(i))

θ̂prev ← 0 ▷ (t
(i)
prev[τ], n̂

(i)
prev[τ], m̂

(i)
prev[τ], Ŝ

(i)
prev[τ], Q̂

(i)
prev[τ])

θ̂recv ← 0 ▷ (t
(i)
recv[τ], n̂

(i)
recv[τ], m̂

(i)
recv[τ], Ŝ

(i)
recv[τ], Q̂

(i)
recv[τ])

loop
Wait(∆)
θ̂ ← Aggregate(θ̂prev, θ̂recv, θ̃

(i)) ▷ Algorithm 4
p← RandomPeer
Send(p, θ̂)

end loop

function OnReceive(θ̂′)
θ̂prev ← θ̂recv
θ̂recv ← θ̂′

end function

At any point during the gossip protocol, each node can use its latest local
estimate (n̂(i)[τ], m̂(i)[τ], Ŝ(i)[τ], Q̂(i)[τ]) to build a local Naive Bayes classifier
as shown in section 2.1. Once a sufficient number of gossiping steps have been
performed, and the estimates have reached convergence, the local classifiers of
every node will be almost identical to each other and to the one that would have
been built by a federated approach.

4 Experiments

We thoroughly evaluate the performance of Federated and Gossip Nave Bayes
on six popular benchmark datasets, all from the UCI repository4. The majority

4 https://archive.ics.uci.edu/ml/datasets.php

Towards a Realistic Decentralized Naive Bayes with Differential Privacy 15

of the datasets comprises either only numerical or only categorical features, with
the exception of Adults, which has both types. The details of each dataset are
summarized in table 2. For all datasets that do not provide a default train/test
split, we perform a 90/10 split with random seed 42, for reproducibility. All the
accuracy results reported in the rest of the section are computed on the test
data, which are kept untouched until the evaluation phase.

Dataset Samples Labels Fnum Fcat Predefined train/test split

Accelerometer 153,000 3 3 0 no
Adult 48,842 2 6 8 yes (2:1)
Congressional Voting 435 2 0 16 no
Mushroom 8,124 2 0 22 no
Skin Segmentation 245,057 2 3 0 no
SPECT Heart 267 2 0 22 yes (3:7)

Table 2. Datasets used in the evaluation. Table from [16].

4.1 Federated Naive Bayes: Homogeneous Setting

In the first set of experiments we compare the accuracy of Federated Naive
Bayes against two baselines: a centralized ε-differentially-private Naive Bayes
implementation by Vaidya et al. [23] and a “vanilla” non-private implementation
based on section 2.1.

We perform the evaluation on different (Nnodes, ε) pairs, testing our algorithm
for Nnodes = 1, 10, 100, 1000 and varying ε from 10−2 to 101. For each pair, we
run a Monte Carlo experiment with 1000 trials and average the results. This
allows to estimate the accuracy for an average execution of Federate Naive Bayes,
accounting for both the variation introduced by differential privacy and by the
data distribution. Our results are displayed in fig. 2.

The plots follow the expected behavior of a differentially-private machine
learning algorithm. When ε is low, the noise introduced by the Laplace mech-
anism completely hinders the prediction. However, for increasing value of ε,
Federated Naive Bayes quickly approaches the accuracy value of the original
centralized Naive Bayes. The value of ε at which this happens depends on the
specific dataset: in Skin Segmentation a value of 1 already yields maximum ac-
curacy in all cases, while SPECT Heart represents the opposite extreme.

It is worth noting that Federated Naive Bayes is not always worse than
its centralized counterpart. It provides better accuracy for small values of ε
on Adult, and for all values of ε on Accelerometer. The reason behind this
counter-intuitive behavior is that Federated Naive Bayes perturbs the numerical
parameters (S̃(i), Q̃(i)) based on the local sensitivity. When the training data
are partitioned across multiple nodes, the local sensitivity at each node may
decrease, reducing the scale of Laplace noise. This hypothesis is confirmed by

16 L. Giaretta, T. Marchioro, et al.

0.01 0.03 0.1 0.32 1.0 3.16 10.0
0

0.2

0.4

0.6

0.8

1

ε

A
cc
u
ra
cy

Accelerometer

Centralized

Federated (Nnodes = 10)

Federated (Nnodes = 100)

Federated (Nnodes = 1000)

Non-private

0.01 0.03 0.1 0.32 1.0 3.16 10.0
0

0.2

0.4

0.6

0.8

1

ε

Adult

Centralized

Federated (Nnodes = 10)

Federated (Nnodes = 100)

Federated (Nnodes = 1000)

Non-private

0.01 0.03 0.1 0.32 1.0 3.16 10.0
0

0.2

0.4

0.6

0.8

1

ε

Congressional Voting

Centralized

Federated (Nnodes = 10)

Federated (Nnodes = 100)

Non-private

0.01 0.03 0.1 0.32 1.0 3.16 10.0
0

0.2

0.4

0.6

0.8

1

ε

A
cc
u
ra
cy

Mushroom

Centralized

Federated (Nnodes = 10)

Federated (Nnodes = 100)

Federated (Nnodes = 1000)

Non-private

0.01 0.03 0.1 0.32 1.0 3.16 10.0
0

0.2

0.4

0.6

0.8

1

ε

Skin Segmentation

Centralized

Federated (Nnodes = 10)

Federated (Nnodes = 100)

Federated (Nnodes = 1000)

Non-private

0.01 0.03 0.1 0.32 1.0 3.16 10.0
0

0.2

0.4

0.6

0.8

1

ε

SPECT Heart

Centralized

Federated (Nnodes = 10)

Non-private

Fig. 2. Accuracy of Federated Naive Bayes for different values of ε and Nnodes vs
centralized and non-private baselines. Image from [16].

fig. 3, which shows the local sensitivity of numerical features for N = 10 and
N = 100, normalized with respect to the N = 1 case.

Note that the presence of numerical features does not guarantee this behav-
ior. The distribution of the numerical features also matters, as it influences the
chance of each node to have lower local sensitivity. This can be seen by looking
at the Skin Segmentation dataset in figs. 2 and 3: despite having only numerical
features, its local sensitivity does not decrease significantly as the number of
nodes increases, and thus Federated Naive Bayes does not gain an advantage on
its centralized counterpart.

For datasets of categorical features, on the other hand, the noise is applied
with a global sensitivity of 1. In such cases, perturbing multiple partitions of the
data only increases the overall amount of noise. Hence, the accuracy decreases
for a larger number of nodes.

Overall, while the performance of Federated Naive Bayes depends on the
characteristics of the dataset, in most cases it achieves similar accuracy to its
centralized counterparts with the same or only slightly higher privacy budget.

4.2 Federated Naive Bayes: Heterogeneous Setting

In the experiments above, we assume that all nodes possess similar amounts of

samples N
(i)
samples ≈ Ntrain/Nnodes and adopt the same privacy budget ε(i) for all

nodes i = 1, . . . , Nnodes. However, in realistic scenarios, nodes have a different
number of data points and may have different privacy requirements. Therefore,
we further evaluate Federated Naive Bayes in a more heterogeneous setting,

Towards a Realistic Decentralized Naive Bayes with Differential Privacy 17

0.2 0.4 0.6 0.8 1
100

101

102

103

104

Sensitivity

Adult

N = 1
N = 10
N = 100

0.2 0.4 0.6 0.8 1
100

101

102

103

Sensitivity

Skin

N = 1
N = 10
N = 100

Fig. 3. Sensitivity distribution of S̃(i) for different numbers of nodes. Image from [16].

where we assign N
(i)
samples and ε(i) according to some probability distribution. We

start by running the same Monte Carlo experiment as above while distributing
the training data according to the two following distributions:

– a uniform distribution U([1, 10]);
– an exponential distribution, Exp(2);

meaning that each node samples a value from such distributions and gets as-
signed a number of data points proportional to the outcome.

Figure 4 shows the mean and standard deviation of the accuracy achieved
on the Adult dataset with different node size distributions. The results suggest
that Federated Naive Bayes perform equally well when different nodes have
significantly different numbers of local samples.

0.01 0.03 0.1 0.32 1.0
0.78

0.79

0.8

0.81

0.82

ε

A
cc
u
ra
cy

(M
ea
n
)

Adult

Constant

Uniform

Exponential

0.01 0.03 0.1 0.32 1.0
0

0.5

1

1.5
·10−2

ε

A
cc
u
ra
cy

(S
D
)

Adult

Constant

Uniform

Exponential

Fig. 4. Mean and standard deviation achieved by Federated Naive Bayes with Nnodes =
1000 and different distributions of N

(i)
samples, on the Adult dataset. Similar results are

achieved on other datasets. Note that the y axis on the left plot does not start from 0.

18 L. Giaretta, T. Marchioro, et al.

Besides assessing the impact that variable N
(i)
samples and ε(i) have on the

results, one may wonder whether it makes sense to include all the updates in
the final model. For example, if one node has a small number of data points, or
a low privacy budget, one may think that it is not worth including its update
in the model, as the extra noise more than compensates for the additional data
points.

In order to determine whether this is the case, we run the following exper-
iment. In a Federated Naive Bayes setting, we randomly distribute the entire

training set across a number of nodes, such as the number of samples N
(i)
samples

at each node i follow a log-uniform distribution between 2 and logNtrain/5. We
then assign a privacy budget ε(i) to each node, again according to a log-uniform
distribution between 10−2 and 101. The reason behind this seemingly odd choice
is that a log-uniform distribution implies that the node sizes are uniformly dis-
tributed in terms of “magnitude”. In other words, a node has roughly the same
likelihood of being assigned 10, 100, or 1000 data points. Likewise, a log-uniform
privacy budget implies that the privacy requirements of the nodes are uniformly
distributed, since the definition of differential privacy involves taking the expo-
nential of the privacy budget.

After assigning data points and privacy budgets to all nodes, we compute
the local updates normally, and measure the overall relative error as

∑
y

|ñ(i)
y − n

(i)
y |

n
(i)
y

+
∑
y,xϕ

|m̃(i)
xϕy −m

(i)
xϕy|

m
(i)
xϕy

+
∑
y,ϕ

|S̃(i)
ϕy − S

(i)
ϕy |

|S(i)
ϕy |

+
∑
y,ϕ

|Q̃(i)
ϕy −Q

(i)
ϕy|

Q
(i)
ϕy

(28)

These error values serve to quantify the amount of noise introduced by each
node. We use each of them as a threshold, and exclude all the nodes with error
above such threshold from the collaborative training.

Our results on two datasets are displayed in fig. 5, with the other datasets
showing similar behaviours. The plot on the left simply show the distribution

of N
(i)
samples and ε(i) among the nodes. In addition, the nodes have a different

color depending on their error value, with the more noisy nodes being assigned a
brighter color. Unsurprisingly, the noise depends mostly on the value of ε, espe-
cially when the features are mostly numerical (such as in the Skin Segmentation
dataset). However, Nsamples also has a significant effect on the amount of noise,
particularly in the presence of categorical features, as in the Adult dataset, as
the sensitivity of Count queries is fixed and thus the corresponding relative
noise is smaller.

For the central and right plots in fig. 5, we consider how the accuracy of a
Federated Naive Bayes classifier would change if all nodes with noise level above
a certain threshold were discarded from the aggregation. Based on the results,
this kind of cutoff would not change the typical accuracy of the model. However
choosing a very high or very low threshold can significantly influence the run-to-
run variance. When the threshold is very high (i.e. virtually all contributions are
accepted), this confirms the intuition that some nodes may be contributing more
noise than information. On the other hand, when the threshold is very low, too

Towards a Realistic Decentralized Naive Bayes with Differential Privacy 19

much data is lost and high accuracy can only be achieved if the remaining nodes
happen to represent very well the overall population. This is made obvious in
the right side plots, which highlight how the worst accuracy results are obtained
when only a single node is below the threshold.

101 102 103

Node size

100

101

102

P
ri
va
cy

b
u
d
ge
t
ε

Adult dataset (1000 runs)

10−2 100

Noise threshold

0.80

0.81

0.82

0.83

0.84

A
cc
u
ra
cy

Adult dataset (1000 runs)

0 20 40 60
Nodes below threshold

0.80

0.81

0.82

0.83

0.84

A
cc
u
ra
cy

Adult dataset (1000 runs)

10−3

10−2

10−1

100

102 104

Node size

10−1

100

101

P
ri
va
cy

b
u
d
ge
t
ε

Skin dataset (1000 runs)

10−4 10−1

Noise threshold

0.922

0.923

0.924

A
cc
u
ra
cy

Skin dataset (1000 runs)

0 25 50 75
Nodes below threshold

0.922

0.923

0.924

A
cc
u
ra
cy

Skin dataset (1000 runs)

10−4

10−2

100

Fig. 5. Impact of noise thresholding on the accuracy of Federated Naive Bayes models.

4.3 Gossip Naive Bayes

As described in section 3.3, nodes in Gossip Naive Bayes compute the same
differentially-private local updates as in Federated Naive Bayes, with the only
change being the aggregation of these updates happens in a peer-to-peer fashion,
rather than via a central aggregator. Thus, in our experiments we investigate
whether this gossip-based aggregation can converge to the same results as a
federated aggregation, and how many steps this convergence takes.

More specifically, we follow the same setup as in section 4.1 and apply both
federated and gossip aggregation on the exact same runs, thus allowing a di-
rect comparison not influenced by randomized dataset partitioning and noise
generation.

Figure 6 shows how the accuracy of local Gossip Naive Bayes models evolves
as more gossiping iterations are performed, on the Adult dataset with Nnodes =
1000 and ε = 10

1
2 . Similar results were achieved on all datasets. In the first few

iterations, as expected, the accuracy is very low, as the local estimates have only
“seen” few local updates. Furthermore, the inter-quartile range of the accuracies
is relatively wide. However, after just around 30 iterations, a vast majority of the
nodes have reached the accuracy of the corresponding Federated Naive Bayes

20 L. Giaretta, T. Marchioro, et al.

10 20 30 40 50

0.55

0.6

0.65

0.7

Gossip steps

A
cc

u
ra

cy

Adult dataset (1000 nodes, ε = 101/2)

Fig. 6. Accuracy of Gossip Naive Bayes over multiple gossiping steps. The blue line is
the median accuracy across 1000 participating nodes, the shaded area represents the
inter-quartile range. The dotted line is the accuracy achieved by Federated Naive Bayes
on the same set of local updates.

model, and this convergence further improves over additional iterations, with
variance across different nodes reducing.

Figure 7 provides a more granular view, enabling a qualitative analysis of
how individual Naive Bayes parameters converge over time. Prior probabilities,
which on unbalanced datasets are typically the most influential parameters in the
prediction, very quickly converge to the correct values. Conditional probabilities
of categorical features and means of numerical features converge slightly slower
and can show slight deviations from a federated aggregation after convergence.
Finally, the standard deviations of numerical features significantly deviates from
the expected values after convergence. These different converge speeds and de-
viations after convergence may be due to error propagation across the different
statistics. Prior probabilities are computed directly from n̂. Means (resp. condi-
tional probabilities) depend from both Ŝ (resp. m̂) and n̂. Standard deviations
depend on Q̂, n̂ and, importantly, the squares of the means. Yet, fig. 6 shows that
these deviations do not affect the overall accuracy of the model, thus proving
the robustness of our differentially-private Naive Bayes scheme.

5 Related work

Naive Bayes has shown consistent results in multiple applications [20, 26], draw-
ing the attention of both researchers and practitioners. Therefore, it is not sur-
prising that prior works explored the possibility of training Naive Bayes models
across multiple data sources. Such works considered both the case of vertically

Towards a Realistic Decentralized Naive Bayes with Differential Privacy 21

20 40

0.2

0.4

0.6

0.8

Gossip steps

Prior probabilities

20 40

0.1

0.15

0.2

Gossip steps

Conditional probabilities

20 40

0

2

4

Gossip steps

Means (normalized)

20 40

1

2

3

Gossip steps

Standard deviations ratio (normalized)

Fig. 7. Distribution of different Naive Bayes parameters across nodes over multiple

steps of Gossip Naive Bayes, on the Adult dataset with Nnodes = 1000 and ε = 10
1
2 .

Lines and shaded areas of different colors represent median and inter-quartile range of
each individual parameter.

22 L. Giaretta, T. Marchioro, et al.

partitioned data [22, 10], where each data source owns different features, and hor-
izontally partitioned data [12, 14], where data sources own different data points
comprising the same features. Our work belongs to the latter line of research.
Prior designs of distributed Naive Bayes algorithms over horizontally distributed
data mainly focused on protecting local updates via cryptographic methods, such
as homomorphic encryption [12]. However, while homomorphic encryption is ef-
fective in hiding local updates, it does not prevent privacy leaks from the final
model.

A centralized implementation of Naive Bayes under differential privacy, which
served as an inspiration for this work, was introduced by Vaidya et al. [23]. A
work by Li et al. [14] proposed the combined use of homomorphic encryption
and differential privacy, but the utility-privacy tradeoff was not evaluated in
the paper. Furthermore, the algorithm accounted only for categorical features.
Another work by [25] relies on semitrusted mixers, which is based on a form of
secure multiparty computation.

The works related to vertically partitioned data, instead, may be considered
complementary to our work. A recent paper by Islam et al. [10] evaluated a fed-
erated version of Naive Bayes where the data are vertically partitioned. In such
case, the Naive Bayes parameters for each feature can be computed locally by the
node owning such feature. The final model is the collection of such parameters.

6 Future work

Non i.i.d. data distribution In this work we evaluated Federated and Gossip
Naive Bayes for a varying node size and privacy budget. However, the distribu-
tion of the data among the nodes is kept i.i.d. in all our experiments. In order to
further generalize our results, future work should explore different data distribu-
tions. One case may consist in considering class imbalances between the nodes.
Another possibility is to investigate sample biases within the nodes. These may
be simulated by clustering data points according to some similarity metric, and
assigning each cluster to a node.

Feature selection A relevant component of Naive Bayes models is feature se-
lection. Discarding less important features is essential to train a robust model
with good generalization capability [5]. This is especially true when differential
privacy is applied and needs to be divided between the features, and thus hav-
ing irrelevant features only contributes to add more noise. A naive idea may
be to have each node ranking features locally, and to combine local rankings
to select most relevant features. Local ranking can be performed with several
well-established feature ranking techniques [18].

Byzantine resilience The shift towards decentralized and private data sources
leads to the emergence of a new challenge: byzantine data owners. Instead of
following the correct protocol, these disseminate maliciously-generated model
updates, typically with the goal of preventing model convergence, inserting spe-
cific biases in the final model, or causing the training process to leak specific

Towards a Realistic Decentralized Naive Bayes with Differential Privacy 23

private data. Thus, byzantine-resilient federated learning [15, 2] has become an
important research area. One of the most common approaches to achieve byzan-
tine resilience is to use median-based aggregation functions [4, 9] to filter out
contributions that diverge excessively from the majority of the nodes. However,
Federated Naive Bayes relies on dataset statistics that are not directly amenable
to this approach, as their magnitudes depend on data partition sizes. One option
could be for the nodes to compute and share statistics that are independent of
partition sizes (e.g. prior probabilities instead of prior counts), but this would
significantly increase noise and numerical errors for under-represented classes.
Thus, how to effectively achieve byzantine resilience for Federated and Gossip
Naive Bayes is an open challenge.

7 Conclusions

This paper introduced two algorithms to collaboratively train a Naive Bayes
model across multiple partitions, and under differential privacy guarantees: Fed-
erated and Gossip Naive Bayes. Both algorithms have been thoroughly evalu-
ated, exploring the privacy-utility tradeoff for different distribution of node size
and of privacy budget. Our results suggest that models trained with Federated
or Gossip Naive Bayes offer comparable accuracy to their centralized counter-
part, requiring only a slightly higher privacy budget depending on the dataset.
Furthermore, both approaches are robust to varying distributions of the nodes’
size and privacy budgets, thus making the suitable for real-world scenarios with
heterogeneous data owners.

References

1. Alkathiri, A.A., Giaretta, L., Girdzijauskas, S., Sahlgren, M.: Decentralized
word2vec using gossip learning. In: 23rd Nordic Conference on Computational Lin-
guistics (NoDaLiDa 2021) (2021)

2. Awan, S., Luo, B., Li, F.: Contra: Defending against poisoning attacks in federated
learning. In: European Symposium on Research in Computer Security. pp. 455–475.
Springer (2021)

3. Bernal, D.G., Giaretta, L., Girdzijauskas, S., Sahlgren, M.: Federated word2vec:
Leveraging federated learning to encourage collaborative representation learning.
arXiv preprint arXiv:2105.00831 (2021)

4. Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J.: Machine learning with
adversaries: Byzantine tolerant gradient descent. Advances in Neural Information
Processing Systems 30 (2017)

5. Chen, J., Huang, H., Tian, S., Qu, Y.: Feature selection for text classification with
näıve bayes. Expert Systems with Applications 36(3), 5432–5435 (2009)

6. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci. 9(3-4), 211–407 (2014)

7. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: A client
level perspective. arXiv preprint arXiv:1712.07557 (2017)

24 L. Giaretta, T. Marchioro, et al.

8. Giaretta, L., Girdzijauskas, v.: Gossip learning: Off the beaten path. In: 2019
IEEE International Conference on Big Data (Big Data). pp. 1117–1124 (2019).
https://doi.org/10.1109/BigData47090.2019.9006216

9. Guerraoui, R., Rouault, S., et al.: The hidden vulnerability of distributed learning
in byzantium. In: International Conference on Machine Learning. pp. 3521–3530.
PMLR (2018)

10. Islam, T.U., Ghasemi, R., Mohammed, N.: Privacy-preserving federated learning
model for healthcare data. In: 2022 IEEE 12th Annual Computing and Communi-
cation Workshop and Conference (CCWC). pp. 0281–0287. IEEE (2022)

11. Ji, Z., Lipton, Z.C., Elkan, C.: Differential privacy and machine learning: a survey
and review. arXiv preprint arXiv:1412.7584 (2014)

12. Kantarcıoglu, M., Vaidya, J., Clifton, C.: Privacy preserving naive bayes classifier
for horizontally partitioned data. In: IEEE ICDM workshop on privacy preserving
data mining. pp. 3–9 (2003)

13. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: 44th Annual IEEE Symposium on Foundations of Computer Science,
2003. Proceedings. pp. 482–491. IEEE (2003)

14. Li, T., Li, J., Liu, Z., Li, P., Jia, C.: Differentially private naive bayes learning over
multiple data sources. Information Sciences 444, 89–104 (2018)

15. Lyu, L., Yu, H., Ma, X., Sun, L., Zhao, J., Yang, Q., Yu, P.S.: Privacy and robust-
ness in federated learning: Attacks and defenses. arXiv preprint arXiv:2012.06337
(2020)

16. Marchioro, T., Giaretta, L., Markatos, E., Girdzijauskas, Š.: Federated naive bayes
under differential privacy. In: 19th International Conference on Security and Cryp-
tography (SECRYPT), JUL 11-13, 2022, Lisbon, Portugal. pp. 170–180. Scitepress
(2022)

17. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.y.:
Communication-Efficient Learning of Deep Networks from Decentralized Data.
In: Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Con-
ference on Artificial Intelligence and Statistics. Proceedings of Machine
Learning Research, vol. 54, pp. 1273–1282. PMLR (20–22 Apr 2017),
https://proceedings.mlr.press/v54/mcmahan17a.html

18. Novakovic, J.: The impact of feature selection on the accuracy of näıve bayes clas-
sifier. In: 18th Telecommunications forum TELFOR. vol. 2, pp. 1113–1116 (2010)

19. Ormándi, R., Hegedűs, I., Jelasity, M.: Gossip learning with linear models on fully
distributed data. Concurrency and Computation: Practice and Experience 25(4),
556–571 (2013)

20. Rish, I., et al.: An empirical study of the naive bayes classifier. In: IJCAI 2001
workshop on empirical methods in artificial intelligence. vol. 3, pp. 41–46 (2001)

21. Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz, M., Backes, M.: Ml-leaks:
Model and data independent membership inference attacks and defenses on ma-
chine learning models. arXiv preprint arXiv:1806.01246 (2018)

22. Vaidya, J., Clifton, C.: Privacy preserving naive bayes classifier for vertically par-
titioned data. In: Proceedings of the 2004 SIAM international conference on data
mining. pp. 522–526. SIAM (2004)

23. Vaidya, J., Shafiq, B., Basu, A., Hong, Y.: Differentially private naive bayes classi-
fication. In: 2013 IEEE/WIC/ACM International Joint Conferences on Web Intel-
ligence (WI) and Intelligent Agent Technologies (IAT). vol. 1, pp. 571–576. IEEE
(2013)

Towards a Realistic Decentralized Naive Bayes with Differential Privacy 25

24. Wei, K., Li, J., Ding, M., Ma, C., Yang, H.H., Farokhi, F., Jin, S., Quek, T.Q.S.,
Poor, H.V.: Federated learning with differential privacy: Algorithms and perfor-
mance analysis. IEEE Transactions on Information Forensics and Security 15,
3454–3469 (2020). https://doi.org/10.1109/TIFS.2020.2988575

25. Yi, X., Zhang, Y.: Privacy-preserving naive bayes classification on distributed data
via semi-trusted mixers. Information systems 34(3), 371–380 (2009)

26. Zhang, H.: The optimality of naive bayes. Aa 1(2), 3 (2004)
27. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. Advances in Neural Infor-

mation Processing Systems 32 (2019)

