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ABSTRACT

Progress in proteomics has enabled biologists to accurately measure the amount of protein in a tu-
mor. This work is based on a breast cancer data set, result of the proteomics analysis of a cohort of
tumors carried out at Karolinska Institutet. While evidence suggests that an anomaly in the protein
content is related to the cancerous nature of tumors, the proteins that could be markers of cancer types
and subtypes and the underlying interactions are not completely known. This work sheds light on
the potential of the application of unsupervised learning in the analysis of the aforementioned data
sets, namely in the detection of distinctive proteins for the identification of the cancer subtypes, in the
absence of domain expertise. In the analyzed data set, the number of samples, or tumors, is signifi-
cantly lower than the number of features, or proteins; consequently, the input data can be thought of
as high-dimensional data. The use of high-dimensional data has already become widespread, and a
great deal of effort has been put into high-dimensional data analysis by means of feature selection,
but it is still largely based on prior specialist knowledge, which in this case is not complete. There is
a growing need for unsupervised feature selection, which raises the issue of how to generate promis-
ing subsets of features among all the possible combinations, as well as how to evaluate the quality of
these subsets in the absence of specialist knowledge. We hereby propose a new wrapper method for
the generation and evaluation of subsets of features via Spectral Clustering and modularity, respec-
tively. We conduct experiments to test the effectiveness of the new method in the analysis of the breast
cancer data, in a domain expertise—agnostic context. Furthermore, we show that we can successfully
augment our method by incorporating an external source of data on known protein complexes. Our
approach reveals a large number of subsets of features that are better at clustering the samples than
the state-of-the-art classification in terms of modularity and shows a potential to be useful for future
proteomics research.

1. Introduction

likely incomplete, mainly because clinical routine primar-
ily relies on immunostaining of ER, PR, HER2 and Ki67.

Breast cancer is the most frequent cancer type among
women and one of the most common death causes world-
wide. In the clinic, breast tumors are classified into five sub-
types (basal-like, luminal A, luminal B, HER2, and normal-
like) based on the status of the clinicopathological surrogates
estrogen receptor (ER), progesterone receptor (PR), human
epidermal growth factor receptor 2 (HER2, or ERBB2), and
proliferation marker Ki67 (MKI67). The specific physio-
logical features of the cancer subtypes have been found to
closely follow a molecular signature comprising the expres-

sion at transcript (mRNA) level of a panel of 50 genes (PAMS50)

[22, 24, 27]. This classification guides the process of treat-
ment decisions in current clinical practice. However, recent
studies show that classification ambiguities still exist, and
moreover suggest that the current classification system is
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Further still, the PAMS50 gene expression signature remains
insufficient to adequately stratify all tumor subtypes for the
purpose of treatment [27, 15].

Cancer research has received a new dimension by the
recent high-throughput mass spectrometry—based proteomic
studies, where the focus is moved from transcript level gene
expression to quantification at the protein level [9, 23, 26].
Accordingly, the protein quantification techniques have en-
abled protein-based molecular characterization of breast tu-
mors [27, 15]. Given that the protein level is closer to the
phenotype than the mRNA level, one is now able to explore
protein level inter-tumor heterogeneity and thereby initiate
proteomic-based classification of tumors [26, 27, 15]. These
proteomic-based classifications demonstrate the importance
of deep proteomic analyses, which may lead to stronger pre-
dictors of therapeutic response for better cancer treatment as
well as improved patient stratification, since cellular func-
tion and pharmaceutical intervention are largely mediated at
the protein level [15].

It is generally thought that all cancers have their root in
mutations, abnormal changes in the DNA which lead to ab-
normal expression of genes and ultimately to cellular dys-
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function [17]. Tumors can either be inherently resistant or
acquire resistance to treatment, these traits also being the re-
sult of a faulty gene expression at the cellular level. Whilst
the molecular signature provided by the PAMS50 gene ex-
pression profile at transcript level is extremely useful to un-
derstand the biology of the breast cancer subtypes, there is
often a substantial correlation gap between the transcript and
its protein product, due to e.g. translational regulation or tar-
geted protein degradation [15]. Proteomic data analysis, be-
ing a more direct assessment of the main functional molecules
in a cell (i.e. the proteins) can increase the understanding of
how DNA mutations can lead to malicious cell behaviour,
and may help elucidate cancer mechanisms more amenable
to therapeutics. This is why one should go beyond mRNA-
based PAMS50 classification, and look for similarity patterns
among breast cancer patients at the proteomics level, which
may uncover more accurate patient stratifications, eventually
leading to improved treatment decisions.

Proteomic-based profiles contain a high number of pro-

tein products, usually reaching a quantitative depth of 10, 000+

proteins [15, 26]. This high dimensionality makes the tu-
mor classification task very challenging and computation-
ally expensive, specifically when it is required to select the
most important proteins for effective disease classification.
Although the field of data mining has different analytical
pipelines for big data, the main concern with proteomics
is data sparsity, such that the number of data samples (i.e.,
patients) is too small compared to the number of measured
proteins. This can be described as high-dimensional small-
sample problem, where we have the number of variables
or features usually being much higher than the number of
samples. Thus, available data mining and machine learning
models of proteomic data mainly depend on supervised ma-
chine learning techniques [26, 27, 12]. For example, Tyanova
etal. [26] trained three different supervised classification and
feature selection models, each one separating a single breast
cancer subtype from the other two subtypes included in their
data set.

The problems with high dimensionality result from the
fact that the set of data points becomes increasingly sparse
as the dimensionality increases, which in turn makes deeper
analysis of data unfeasible or unattainable. Particularly in
clustering purposes, the high dimensionality affects the dis-
tance or similarity metric used to cluster data points. Mean-
ingful clustering requires that the objects within clusters are,
in general, closer to each other than to objects in other clus-
ters. Previous work, which analyzed the behavior of dis-
tances for high dimensional data, showed that the distances
between points become relatively uniform in high dimen-
sional spaces, to the point that data clustering becomes mean-
ingless as the notion of the closest and farthest neighbor of a
point ceases to exist [2]. However, most data features are
highly redundant and can be efficiently scaled down to a
much smaller number of variables without a significant loss
of information. This process of dimensionality reduction
can be performed in two different ways: by only keeping the
most relevant features from the original ones (this technique

is called feature selection) or by finding a smaller set of new
variables, each being a combination of the input features,
containing basically the same information as the input vari-
ables (this technique is called feature transformation) [6].

Feature selection can be used to transform high dimen-
sional proteomic data into a reduced representation. How-
ever, it is a challenging task to find a reduced meaningful
representation that maintains the intrinsic properties of the
data, such that the observed properties and underlying pat-
terns become more pronounced using the reduced represen-
tation. In this study, we address the challenging question of
identifying relationships between cancer cell behavior and
specific groups of proteins. Differently from existing work
that focuses on analyzing the performance of using quantita-
tive protein levels to cluster the tumors and the accuracy of
this clustering compared to the current consensus of breast
cancer subtypes, our objective in this study is to propose un-
supervised methods to extract groups of proteins that can be
linked to idiosyncrasies of the disease without the need of
prior expertise knowledge.

Due to the domain of the analysis, it is important for the
results and thus for the methodology to be interpretable, be-
cause we cannot take it for granted that certain proteins are
connected to breast cancer. In other words, we must be able
to retrace our steps, to explain why we select the one protein
instead of the other. As Hutson writes in [14], Artificial In-
telligence (Al) has received a keen interest in recent years.
It has expanded the frontiers of computer science, but at the
same time its marvellous results have led people to employ it
as a passepartout that is arbitrarily used to execute tasks for
which Al is not really necessary. This is why, our wrapper
method is constructed on top of classical machine learning.

Using 45 tumor samples [15] from the Oslo2 landscape

Breast Cancer cohort we perform our domain expertise—agnostic

analysis by creating a similarity graph of proteins. The ba-
sic idea is to construct a graph from the proteomic profiles
where each vertex represents a protein, and each weighted
edge represents the similarity between two proteins with re-
spect to their measured levels in the tumor samples. Then,
this graph is fed into a graph clustering algorithm that par-
titions the graph into clusters, such that proteins that be-
long to a group should be similar (or related) to one an-
other and different from (or unrelated to) the proteins in other
groups. The greater the similarity (or homogeneity) within a
group and the greater the difference between groups, the bet-
ter the clustering. We propose two different methodologies
for creating this similarity network among the proteins, the
first methodology is based on the quantified protein levels,
whereas the second one is created using protein complexes,
specifically the CORUM database [11].

Our proposed unsupervised feature selection pipeline is
composed of three steps as shown in Figure 1. We start with
the feature filtering step by selecting the set of proteins hav-
ing the highest variance across the 45 patients. We only want
to consider the proteins that show different values with dif-
ferent patients (i.e., present a pattern among the patients),
while ignoring proteins that carry no signal and show al-
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Figure 1: The proposed unsupervised feature selection pipeline for breast cancer proteomic data analysis.
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Feature Filtering step by focusing the analysis on most varying proteins. Afterwards, we create two similarity graphs to proceed
further with Candidate Generation step. Our last step is Candidate Evaluation that is based on calculating the modularity scores.

most same value across the set of patients. Therefore, we
calculate the z-score for all the proteins. Specifically, we
calculate the population mean as the mean of all entries in
our data set, then for each protein we calculate the average
number of standard deviations its associated values with dif-
ferent patients are away from the population mean. Having
the z-score being calculated for each protein, we rank the
proteins and select the set of most varying proteins and use
them to create the similarity graph.

Having created the similarity graph, we start our second
step, i.e., candidate generation, by performing the process of
graph clustering to split the input graph into multiple groups.
The graph clustering step can produce too many possible
ways of grouping the proteins, thus we compute modular-
ity score for the extracted subsets of proteins [3]. We use
the modularity score as measure to indicate the strength of
splitting the tumors into two groups using every extracted
protein group. Afterwards, we pick the protein groups with
the highest modularity and we define this process as candi-
date evaluation in our analysis pipeline. These candidates
represent the groups of highly correlated proteins that can
be used as a reduced dimensional representation of the data
to perform further analysis to uncover more patient stratifi-
cations. Table 1 lists some of the candidate protein groups
that have the highest modularity score.

Our results show that the protein groups with highest
modularity are associated with biological phenotypes dis-
tinguishing the different tumor samples. Namely, one of the
most notable clusters contains proteins that are expressed at
higher levels during mitosis, underpinning cell proliferation,
indicating that the tumors can be well classified in to high
or low proliferation. And whereas this property, the prolif-
eration state, is a rather well known classifier in breast and
other cancers, our current analysis also reveals more subtle
clusters associated with other biological processes, such as
extracellular matrix homeostasis, lipid metabolism, and im-
mune response.

Accordingly, we can describe the contributions of this
paper as follows:

e protein similarity network that can be created using

different data sources, e.g., proteomic data as well as
protein complexes database;

o clustering pipeline to reduce the dimensionality of the
similarity graph, and selecting groups of proteins that
capture patterns across cancer cells; and

e biological interpretation of the top-scoring proteins,
in light of the differences between the samples, which
highlights potential benefits of proteome data analysis.

Outline. The following will explain the disposition of
the article. Section 2 provides background on breast cancer
subtypes as well as a description of the proteomics data set
used in this work. Section 3 discusses related work; whereas,
Section 4 presents the research methodology used. Section
5 presents the results, which Section 6 discusses from a bi-
ological perspective. Section 7 presents the future work and
Section 8§ concludes the article.

2. Breast Cancer and Proteomics Data

In this section we provide a brief overview on breast can-
cer molecular subtypes as known in the literature. We also
describe the proteomics data set retrieved from Karolinska
Institutet and analyze its content based on these known sub-

types.

2.1. Breast Cancer Subtypes

Researchers have been studying the classification of breast
cancer based on molecular characteristics, and how this could
be useful in planning treatment and developing new ther-
apies [15]. The complex profile of each subtype is deter-
mined using both molecular information and genetic expres-
sion profiling from tumor cells. Although there are refer-
ences about some less common molecular subtypes, such as
Claudin-low [7], most recent studies agree on dividing breast
cancer into five major molecular subtypes: basal-like, lumi-
nal A, luminal B, HER2, and normal-like. These subtypes
are mostly used in research settings with the aim of guiding
better and more personalized treatments.
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Recent developments in proteomics have allowed researchers

and practitioners to quantify proteins in tumor cells with un-
precedented success. In [15], researchers have been able, for
the first time, to identify the molecular subtype of tumors
based on analyzing breast tumor proteomes, where 9,995
proteins have been quantified across all tumors. Another out-
standing outcome of that proteomes analysis was the ability
to further subdivide basal-like and luminal B tumors. This
result suggests that the currently adopted molecular clas-
sification of breast cancer tumors can be further expanded
to find even more fine-grained subtypes which could guide
more personalized and better targeted treatments. Towards
achieving this, this work aims to perform a more thorough
analysis of the data, based on state-of-the-art machine learn-
ing mechanisms.

2.2. Breast Cancer Proteomics Data

The data set covers a panel of 45 breast cancer samples
consisting of 9 samples per each cancer subtype (i.e. basal-
like, luminal B, HER2, luminal B, and normal-like). Each
sample has a proteomic profile of 9,995 features, each rep-
resenting the quantification of a specific protein, where the
possible values range from 0.00478 to 30.087438. Numbers
are not absolute values but are instead ratios, as determined
by dividing the abundance of each protein in a given sample
by the average of the forty-five breast cancer tumors, and as
a result their arithmetic mean is equal to 1.0. See Johansson
et al. [15] for details of the laboratory analyses.

There is a large number of outliers. Row-wise, standard
deviations range between 0.067 and 4.735, despite the fact
that the overall standard deviation is equal to 0.412, which
means that we found a wide variance in some of the features.
Overall, the Interquartile Range (IQR), i.e., the difference
between the upper quartile and the lower quartile, is 1.147 —
0.854 = 0.293. According to Tukey [25], outliers are, by
definition, data points below the lower quartile or above the
upper quartile by a margin of at least 1.5 times the IQR. Here,
28,681 values out of 45 - 9,995 = 449, 775 fall within the
definition of ’outlier’, in support of our working hypothesis
that an anomaly in the data could indicate cancer.

Large numbers of values are concentrated in the area of
the arithmetic mean and the distribution has a right skew. In
order to normalize this data, we adopt the common practice
of log-normalization by calculating the binary logarithm of
the values. In this way, we can reduce skewness and properly
weigh outliers on both sides of the distribution.

In order to better understand the relationships between
the proteomics data in hand and the known sub-types of the
covered samples, we provide a visualization of the state-
of-the-art classification of breast cancer cells in Figure 2.
Figure 2 shows the binary logarithm of the protein content,
where samples are shown on the horizontal axis, divided into
the five breast cancer subtypes. As can be seen on the figure,
different groups of proteins highlight the presence of differ-
ent breast cancer subtypes. For example, blue in the top left-
hand corner of Figure 2 puts a lot of emphasis on the breast
cancer cells of type basal-like. Also, in case of type HER2,
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Figure 2: Representation of the five subtypes of breast cancer
cells, basal-like (blue), luminal B (orange), HER2 (green), lu-
minal A (red), and normal-like (purple), as available from the
proteomics data of the labeled samples.

there is an excess of ERBB2 and GRB7.

3. Related Work

We review the related work from two perspectives. First,
we look unto prior works on proteomic data analysis, with
a focus on the ones adopting computer science approaches.
We thereafter review existing works on dimensionality re-
duction, as our proposal for proteomic data analysis relies
mostly on this area of computer science research.

3.1. Proteomic data analysis

Prior to advances in proteomic data generation, work has
previously been done in the field of DNA microarray data
analysis. DNA microarray measures the expression of the
genes but it is a rough estimate of the actual protein content.
Support Vector Machines (SVMs) are popular tool for the
analysis of this kind of data as detailed in [13]. However, the
focus has mainly been on the problem of recognition of can-
cer types, instead of subtypes, based on the gene expression.
Peng et al. [21] proposes a method based on a Memetic Al-
gorithm (MA) for the selection of the genes characteristics of
each of the cancer types, such as lung cancer and leukemia.
The proposed solution is a Genetic Algorithm (GA), which
makes use of the crossover operator for recombination, en-
riched with an iterated local search. Similarly, Duval et al.
[8] use a combination of a GA and a SVM. All these works
have been exploiting data analysis techniques on DNA mi-
croarray data, which provided only rough approximates of
protein content in tumor cells.

As the field of proteomics developed and scientists be-
came able to generate measurements of actual protein con-
tents in cells, many data-driven classification approaches have
been proposed using quantitative proteomics to examine the
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mapping of clustering data using some of the measured pro-
teins to the well-established breast cancer subtypes known
using mRNA-based PAMS50 markers. Works such as Tyanova
et al. [26] and Johansson et al. [15] provide different types
of analysis performed at the protein level in order to come
up with classification frameworks that would map the sam-
ples in the proteomics data to the known cancer molecu-
lar subtypes. For instance, in Tyanova et al. [26] the au-
thors propose cancer subtype classification framework us-
ing a data set consisting of forty breast cancer samples hav-
ing proteomic profiles with depth 7,000+ proteins in each
sample. Their proposed framework incorporates several su-
pervised machine learning methods to perform the tasks of
classification, feature selection and cross-validation. The
authors employ SVM for classification purposes, such that
they train three different classifiers, each one separating one
breast cancer subtype from the other two. In the most re-
cent work in Johansson et al. [15], the authors employ hi-
erarchical clustering on breast cander proteomic data to re-
identify the known 5 molecular subtypes. All these works
provide evidence that cancer subtyping can be performed
based on analysing proteomics data, and may provide more
fine grained classes than pure molecular or genetic based
analysis in a laboratory. However, almost all these works
employ supervised, or at best semi-supervised, machine learn-
ing mechanisms, which limits the search space to already
known knowledge about cancer subtypes and their molecular
causes. The novelty of our performed work is the employ-
ment of domain knowledge-agnostic dimensionality reduc-
tion with purely unsupervised feature selection for the identi-
fication of groups of tumors that share common proteomics-
level characteristics, without being biased by prior knowl-
edge on identified molecular subtypes.

3.2. Dimensionality Reduction
In general, dimensionality reduction is the task of mov-

ing from an m; -dimensional space to an m,-dimensional space,

where m, < mj. Of course, the low-dimensional space
is fully expected to represent the high-dimensional space.
There are two categories of methods. According to Cunning-
ham [6], while feature transformation creates brand-new di-
mensions, starting with or without the existing dimensions,
feature selection is performed on the existing dimensions
without affecting the interpretation of the inference.

3.2.1. Feature Selection

In general, feature selection is the task of selecting m, di-
mensions out of m;. There are three categories of methods:
filter, wrapper, and embedded methods [16]. Filter meth-
ods are being used to discard the irrelevant features right
away. To do so, firstly, the features are ordered according to
numbers, such as the information gain and the Pearson’s cor-
relation coefficient, and secondly, the features with signifi-
cance below a given threshold are ignored. After neglect-
ing the insignificant feature, any statistical learning model
would be fitted only once using only the selected features.
On the other hand, Wrapper methods are being used to limit
the search space. Heuristics, such as stepwise selection and

GA:s, are used for candidate generation. The whole idea of
the algorithm is to find the most promising candidates. As
for embedded methods, they try to train the statistical learn-
ing model and to select the features simultaneously.

The same distinction holds both for the supervised and
the unsupervised setting. The majority of previous work in
the field of feature selection focuses on the supervised sce-
nario [4], because in case of unsupervised methods, such as
clustering, it is difficult to define the criteria according to
which the feature selection process is considered successful.
As a matter of fact in case of classifiers it is possible to mea-
sure the accuracy achieved when considering a given sub-
sets of features but this is not possible in case of clustering
where the true labels of the points are unknown. Some alter-
natives to measure the quality of clusters could be deployed,
but hugely depend on the specific domain and settings under
hand. In our work, we deploy unsupervised feature selec-
tion using Spectral Clustering, with modularity as the crite-
ria based on which cluster quality is evaluated.

4. Methodology and Materials

We propose a wrapper method of unsupervised feature
selection for the generation and evaluation of candidate sub-
sets via Spectral Clustering and modularity,respectively. We
define candidates to be feature subsets, in this case protein
subsets, with good inter-connectivity according to a given
similarity network. This wrapper method is composed of
three steps, as follows:

e Feature Filtering. In order to reduce computational
costs of later steps, feature filtering is used. In this
work we consider features whose z-score, which is a
measure of a distribution’s spread, is high, as they are
more likely to highlight distinct behaviour of a subset
of tumor samples. Therefore, this first step consists of
selecting proteins with z-score higher than a specified
threshold. This threshold could be identified based on
the data in hand. It is also worth mentioning that this
step is optional, it is meant for efficiency considera-
tions only, and it may be skipped if it is difficult to
identify a reasonable threshold for this z-score based
filtering.

e Candidate Generation. So as to generate candidates,
in the absence of prior knowledge, we resort to unsu-
pervised learning. In general, clustering enables the
detection of elements that form groups that are closer
to each other compared to the rest of the elements in
the input space. We make use of one of the state-
of-the-art-clustering techniques, i.e., Spectral Cluster-
ing. Since the algorithm takes an affinity matrix as in-
put, we convert the breast cancer data into a graph, in
which the weight of the edges between the nodes, that
is the features, is proportional to how affine the fea-
tures are across the samples. Also, we develop a sec-
ond version of this step that, after importing a repos-
itory of protein complexes, encodes the information
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about the collaboration between the proteins into the
weighted edges in the feature graph.

e Candidate Evaluation. In this step, the generated fea-
ture candidates are evaluated. This is done by using
each candidate as the basis for tumors classification
and comparing the achieved results to those achieved
using the state-of-the art breast cancer classification
following the PAMS50-based system. The comparison
between the achieved classifications is based on the
modularity score of the bisection of the samples.

Working hypothesis is that breast cancer subtypes are
recognized by candidates, that is feature subsets, that high-
light the presence of dissimilarities between samples. In
other words, we assume that differences between the sam-
ples that might indicate the existence of a breast cancer sub-
type are easier to recognize when considering only a small
fraction of the available features.

Figure 1 shows the steps of our method. Candidate Gen-
eration has two branches. While the top branch exploits the
breast cancer data only, the bottom branch imports a small
protein-to-protein interaction data set from CORUM [11].
The purpose of the second branch is to fine tune the distances
between proteins also based on their known biological inter-
actions in normal cells.

4.1. Feature Filtering

Unfortunately, the generation and evaluation of candi-
dates is a problem of great computational complexity, in terms
of both time and space. As a matter of fact, for the exhaustive
search, it is necessary to generate and evaluate 29 differ-
ent sets of candidate features. Of course, a smaller number
of features will soften the requirements of the algorithm.

Taking inspiration from filter methods, we assert that it is
preferable to discard the features whose information content
is not significant in order that anomalies may cut through the
noise. Since feature filtering is optional, we affirm that our
method is still in the category of wrapper methods.

Proteins are listed in descending order of explained vari-
ance. Intuitively, the top n features are more likely to high-
light the presence of an anomaly in the data. Therefore, it is
logical to ignore all the features with low variance, because
they exhibit similar measurements across all samples.

We have to sort the features by a measure of variance
in order to filter in an objective way. Among other metrics,
we can use the z-score, also known as standard score, as a
measure of how spread is a distribution. The z-score of X is

| X — uxl
z=—">"

Ox

ey

where py is the arithmetic arithmetic mean and oy is the
standard deviation of X. Both yy and oy have been cal-
culated on all of the 45 - 9,995 values of protein content.
Basically, the z-score is equal to the difference between X
and the arithmetic mean expressed in number of steps when
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Figure 3: Vertical axis shows the standard score of the features,
that is the proteins, in descending order.

the step is equal to the standard deviation. We added the ab-
solute value to make the numbers comparable regardless of
their being on the left or on the right of the arithmetic mean.

The standard score of a feature is equivalent to the max-
imum standard score computed over all samples. Figure 3
shows the maximum absolute standard score of the features.

Features were ordered by the z-score to assess how they
would explain the variance in the data. Now, it is possible
to filter them. With breast cancer data, we made a choice of
a threshold that is unavoidably arbitrary. For example, we
could select the top n features or the features whose z-score
is greater than y + o, where p is the arithmetic mean of the
z-score and o is the standard deviation of the z-score, as it
was the case with the experiments whose results are detailed
below.

4.2. Candidate Generation

As aforementioned, we adopt two different techniques to
generate the similarity graph representing the relationships
among the proteins.

4.2.1. Proteomic Data

The first candidate generation option generates the list
of candidates by using the breast cancer data only, without
external sources of information. Starting with the hypothe-
sis that different cancer subtypes will exhibit characteristic
protein signatures (which reflect the biology of the particu-
lar tumor, as well as provide hints into possible druggable
targets), we expect to generate clusters of proteins whose
content is different from sample to sample. Basically, it is
a matter of clustering the features, instead of the samples,
by transposing, which resolves the problem of our data be-
ing high-dimensional.

For clustering, our choice falls on the state of the art, i.e.,
Spectral Clustering [20]. However, the algorithm requires a
number of clusters and an adjacency matrix, that is, a graph,
as input. We have decided for a variable number of clusters,
i.e., [3,4,...,15], which means that, first, we divide features
in three, second, we divide features in four, and so on. In
the end, we compute the set of candidates as the union of the
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clusters of features just generated. On the plus side, it en-
abled us to generate overlapping clusters. However, we can
expect the size of candidates to be large, especially in the
cases of small numbers of clusters, such as 3 and 4. From
a purely biological point of view, it is necessary to double-
check our list of candidates to validate the experiment’s re-
sults, because it is not certain that there will be a correspon-
dence between breast cancer and anomalies. Of course, dif-
ferences between samples might be due to conditions that
are not related to cancer and there is no way we can derive
it from raw cancer data. Consequently, it is imperative that
the size of candidates be small. By recursion, we continue
clustering the candidates whose size is over the maximum
size that is possible to double-checked comfortably.

Next, it is necessary to convert the breast cancer data
from a table to a graph, i.e., F. As from now, F is gener-
ally referred to as the feature graph. There are 9,995 nodes
in F, one per protein. It is complete, because we need to
have a feature compared to all others. Weight of the edge be-
tween u and v is the affinity between the two nodes. We want
the affinity between the features whose signals are either in
phase or in antiphase to be maximum. For example, there
are close affinities between the i feature and the j feature
if the amounts both of the i protein and of the j® protein
are small or large at the same time as well as if the amount of
the i protein is small (resp., large) and the amount of the j
protein is large (resp., small). Consequently, proteins with
like or opposite behaviour are expected to be in the same
cluster of features. Weight of the edge between u and v is
the absolute value of the cosine of the angle between u and

V.
1_<1_ fi‘fj >
£ 1121111

where f; is the value of the i" feature and f ; is the value of

Ajj =

, (2)
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the j feature. The possible values range from 0.0 and 1.0.
Because of the absolute value, A;; is 1.0 if the signals are
either in phase or in antiphase — in other words, if the angle
between the two features is 0° or 180°.

4.2.2. Protein Complexes

When generating candidates however, it is important not
to lose sight of the big picture. It is a fact that proteins are
not isolated in the cell. On the contrary, they collaborate on
molecular functions as well as biological processes. Proteins
communicate a whole range of messages, which control the
workings of the cell.

There is a lot of data on the subject of Protein-Protein
Interaction (PPI), but in this case we import data from CO-
RUM [11], which is a collection of protein complexes in-
cluding, but not limited to, human protein complexes. In
a nutshell, a protein complex is a complex system of two
or more proteins that associate physically to perform a vari-
ety of tasks. Thus, CORUM [11] allows us to augment our
search space. Naturally, it is possible to add other PPI net-
works, as long as no domain expertise is required to join the
data sets and the data structure is known.

Once again, we create a graph, but in this case, it is used
to encode the participation of proteins in the protein com-
plexes. Like before, Spectral Clustering is used to divide
nodes, that is features, into candidates.

We create a bipartite graph B where the vertices are 9, 995
proteins on one side and 2,916 protein complexes on the
other side. A protein is connected to a protein complex if it
is part of that protein complex. Since B is bipartite, the only
edges in the graph are between proteins and protein com-
plexes.

Candidates have no protein complexes; therefore we need
to encode the further information added by the protein com-
plexes in the weighted edges in the so-called feature graph.
We generate a new graph, i.e., F’, which is the weighted pro-
jection of B onto the proteins. There are 9,995 nodes in F,
one per protein. Two proteins u and v in F’ are connected
with an edge if they share at least one common protein com-
plex in B. Weight is directly proportional to the number of
shared protein complexes in B, but in this particular case it
is important to penalize those protein complexes common
to many proteins because the signal of high-degree protein
complexes is not as strong as the signal of low-degree pro-
tein complexes. So, we use Newman’s weighted projection
of B onto the proteins [18]. Weight of the edge between u
and v is

sksk
uw=2¥3, 3)

k

where d, is the degree of node k and 5,’: is 1 if the edge be-
tween u and k is in B. Of course, we skip the protein com-
plexes whose degree is less than 2. For example, let us as-
sume that there are two proteins, i.e., # and v, in B and only
one protein complex, i.e., k. It is not possible that u and v
share a common node k if the degree of node k is 1 — in
other words, if the number of neighbors of node & is equal to
1.

F' is not guaranteed to be connected; consequently, it
is possible that we will deal with distinct connected com-
ponents. In a graph, a connected component is a subgraph
such that there is a path between all nodes in it. We consider
these connected components to be candidates, since they are,
by definition, subsets of features, and we insert them in the
set of candidates, too.

Here, there was a number of connected components whose
size was too large to be validated manually. Therefore, we di-
vided them into smaller candidates by clustering recursively,
as detailed above.

4.3. Candidate Evaluation

At this point, we need to have our list of candidates tested
in order that candidates may be put in a order. Again, assum-
ing the principle that an abnormal amount of a given protein
or proteins underlays the cancer phenotype in a given tumor,
our aim is to separate the cancer samples having an above-
average or below-average protein content from those having
an average protein content. In other words, we want to divide
the samples into two groups. On the one side, there should be
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samples with higher protein content; on the other side, there
should be samples with lower protein content. We prefer
clustering to classification, disregarding the PAMS50-based
breast cancer subtypes. First, there is some evidence of in-
completeness of the state-of-the-art classification of breast
cancer patients, and second, it may be possible that we cre-
ate a cluster of samples that is incompatible with existing
categories of breast cancer subtypes.

Unlike candidate generation, we cluster the largest eigen-
vectors of the affinity matrix, instead of the ones of the nor-
malized Laplacian matrix when running Spectral Clustering
because we want to maximize the average degree.

Once again, the number of clusters is an input parameter
of the algorithm. Since we want to assess how good the fea-
tures in the candidate under examination are at identifying
clusters of samples, we set 2 as the number of clusters. The
reason for this number is two-fold. First, we do not want to
force a further division of a homogeneous cluster, and sec-
ond, we can always increase the number of clusters. Also, it
is easy to see Figure 2 as a stack of five bisections. Next, we
create a complete graph, i.e., S, which is called the sample
graph, in this case. There are 45 nodes in S, one per sample.
As we have already mentioned, the weight of the edges in
the graph is proportional to the affinity between the nodes in
the sample graph. Our goal is to minimize the intra-cluster
distance, but at the same time, to maximize the inter-cluster
distance, and as a result similar samples have an affinity, un-
like opposite samples. The weight of the edge between u
and v is calculated on the value of the cosine of the angle
between u and v, plus 1.0.

Si.sj Si.sj
Aj=2-(1-———— ) =1+ ——— (@)
lIsillalls; 1l lIs: 21112

where s is the value of the i" sample and s ; 1s the value of
the j™ sample. The possible values range from 0.0 to 2.0.

We cluster the sample graph generated according to the
features in the candidate under evaluation, one candidate at
atime. It is necessary to compare the quality of clusters nu-
merically. There is a variety of clustering performance met-
rics, but in this particular case our choice fell on the modu-
larity score. Fortunato [10] described modularity as a thor-
ough performance metric, because it compares the commu-
nity structure of a graph with the community structure of a
random graph, numerically. According to Blondel et al. [3],
the modularity score is

1 ki-k;
Q: %Z; <A’J_ ﬁ)é(cl,cj), (5)

where m is the sum of the weight of the edges in B, A;; is the
weight of the edge between i and j, k; is the weighted degree
of node i, and ¢; is the label of node i. ¢ is the Kronecker
delta. The possible values range from —1.0 to 1.0. Itis worth
remembering that the modularity score of a random graph is
zero. Equation 6 is Equation 5 in matrix form.

1
0= %tr (s"Bs), 6)

where

ki-k;
7
o )

B;j=A;; -

and s;; is 1 if the predicted label of the i™ sample is j. Q
is, by definition, the trace of s Bs divided by 2m, but in this
particular case we are interested in the best cluster of sam-
ples and, consequently, we return the maximum item on the
principal diagonal.

According to Newman [19], B is a zero-sum matrix, column-

wise and row-wise, and as a result in case of bisection, mod-
ularity is not sufficient to compare the quality of clusters. So,
there need to be at least two clustering performance metrics
to assert that the one cluster is better than the other cluster.
For example, it is possible to measure the internal and/or ex-
ternal connectivity with metrics such as average degree and
conductance.

Candidates are sorted by modularity; however, the trans-
lation of the list of fifty transcripts into the list of thirty-seven
proteins found in the current proteomics data set [15] en-
abled us to set the threshold of modularity so that candidates
may be benchmarked against the state-of-the-art classifica-
tion of breast cancer tumors. It is not easy to make a fair
comparison to the PAMS50-based classification of breast can-
cer cells, because the number of clusters is different. Firstly,
we thought about setting the threshold of modularity to the
modularity score of the bisection of the sample graph gener-
ated according to the state-of-the-art classification of breast
cancer cells. However, it was surprisingly low. We could in-
crease the number of clusters from 2 to 5, but bisection is per-
fectly compatible with our working hypothesis that it is pos-
sible to recognize breast cancer subtypes because they are
subsets of samples whose amount of certain proteins is sig-
nificantly higher or lower than average. We tried to compute
the modularity score of the subsets of the thirty-seven pro-
teins that match the known breast cancer subtypes, visually.
However, it was hard to tell which proteins are mainly re-
sponsible for which breast cancer subtypes, apart from basal-
like and HER2, to some extent, and as a result we reverted
to our first choice of modularity threshold.

5. Experimental Results

Experiments were conducted both with and without fea-
ture filtering, but we report the result of the experiment to
test all three steps, because feature filtering sped up our meth-
ods, but at the same time it did not have repercussions for the
quality of the result.

Figure 4 shows the result of the experiment. Note that the
orange solid line represents the adopted threshold of modu-
larity, i.e., 0.03, which is equal to the modularity score of
the thirty-seven proteins on which the state-of-the-art clas-
sification is based. Here, the maximum size of the candidate
is equal to 42, which is still large, but we noticed that after
a while, candidates started to repeat themselves and thus we
stopped clustering.
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Figure 4: Modularity is on the vertical axis, and the size of the
candidate is shown on the horizontal axis.

As detailed above, we evaluated different threshold op-
tions, because in spite of the fact that the PAM50-based clas-
sification of breast cancer cells has proven to be a valuable
tool in the clinic, the modularity score it achieves is surpris-
ingly low. We suspect it is due to the larger number of candi-
dates, i.e., 5 instead of 2, but at the same time the candidates
are evaluated on the bisection of the samples for the reasons
stated above. Therefore, we proceeded to compute the mod-
ularity score of the subsets of the thirty-seven proteins that,
visually, match the breast cancer subtypes and, actually, the
modularity score was higher. For example, in case of HER2,
the modularity score of the bisection of the sample graph
generated according to ERBB2 and GRB7 is equal to 0.11,
which is 3.5 times better than the score of all thirty-seven
proteins. However, it is not easy to map subsets of proteins
to known breast cancer subtypes, although there are only 37
proteins. For this reason, we opted to set the threshold to the
modularity score of all thirty-seven proteins.

Starting with 9,995 proteins, the number of generated
candidates was over 700, 000, in spite of Branch and Bound
(BB), which was adopted to mark the boundary of the search
space. With feature filtering, 1,332 features out of 9,995
were selected. We keep features whose z-score is over y+o,
where y is the arithmetic mean and ¢ is the standard devi-
ation of the z-score. Candidates decreased in number, i.e.,
54,447, but at the same time there were not any effects on
modularity compared with when not including this optional
step.

The majority of generated candidates achieve a modu-
larity score higher than the baseline threshold. However,
the higher the candidate size, the lower the modularity is.
Table 1 lists the protein group candidates for sizes from 2
to 10 achieving the highest modularity. Please note that the
names of the proteins are the names of the corresponding
genes approved by the HUGO Gene Nomenclature Commit-
tee (HGNCO).

Large numbers of candidates are isolates (i.e., consist of
a single feature, or protein). From a purely biological point
of view, one protein is not likely to be as relevant as a group
of proteins because proteins tend to act in concerted fash-
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Figure 5: Vertical axis shows the frequency of the size of the
small cluster.

ion. Thus, it is rather difficult to make biological sense from
information derived from isolates. It generally makes more
sense to interpret the data of groups of proteins acting within
a certain biological pathway.

Candidates are full of redundancy, especially the stronger
ones. There are subsets of features that occur in more than
one candidate. For example, {GINS3, GINS4}, {GINS1, GINS2,
GINS33, and {GINS1, GINS2, GINS3, GINS4} are on the list of
candidates. In spite of the fact that modularity is inversely
proportional to size, it might be desirable to give priority
to large candidates when deciding on combinations of two
candidates or more. It is worth remembering that a small
candidate will not hold as much information as a large can-
didate.

We made a performance evaluation of the candidates’
ability to cluster the samples, one candidate at a time. We
applied Spectral Clustering on a sample graph that is gener-
ated using the samples as nodes and weight of edges is com-
puting following Eq. (4) using only the proteins mentioned
in the candidate features. Afterwards, we cluster the graph
into two groups. Figure 5 shows the frequency of the size of
the smallest cluster that we obtain when clustering the sam-
ples using the generated candidates. Clearly, the majority of
candidates tend to split the samples in half. One would ex-
pect to see a small cluster with much lower or higher protein
content, which suggests there exists a breast cancer subtype.
However, we suggest that the combination of two candidates
or more creates a fine-grain classification of breast cancer tu-
mors.

There is a strong correlation between features and thus
between candidates. While Figure 6 shows the correlation
coefficient matrix of the 9, 995 features, Figure 7 shows that
there is a correlation between the candidates that are shown
in Table 1. This is why, it is important to balance modularity
and correlation, or candidates will overlap, and as a result
it will not be possible to recognize fine-grain breast cancer
subtypes.

It is possible to create a co-occurrence graph, i.e., H,
which is used to encode the co-occurrence of proteins in can-
didates. After we select the top ten candidates for size from
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Table 1

Top Candidate for Size from 2 to 10
Candidate Modularity
SCGB1D2, SCGB2A2 0.22747956
GINS1, GINS2, GINS3 0.1854362
GINS1, GINS2, GINS3, CENPI 0.16841497
GINS1, GINS2, GINS3, STRA13, CENPI 0.15569982
CENPU, KIAA0101, NUSAP1, PBK, RRM2, TOP2A 0.15063133
FANCI, GINS1, GINS2, GINS3, STRA13, DTL, CENPI 0.13949169
FANCI, GINS1, GINS2, GINS3, KNSTRN, STRA13, DTL, CENPI 0.13492465
FANCI, GINS1, KNSTRN, KPNA2, SHCBP1, SKA1, UBE2T, DTL, SKA3 0.13174092
CENPU, FANCI, GINS1, GINS2, GINS3, KNSTRN, KPNA2, UBE2T, STRA13, DTL 0.13741883
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Figure 6: Correlation Coefficient Matrix

2 to 10, we add a node per protein present. There is an edge
between u and v if these proteins co-occur at least once — in
other words, if they are in the same candidate once or more.
Also, the weight of the edge between protein u and protein v
is the modularity score of the best candidate in which both
u and v are present. H is not guaranteed to be connected.
Indeed, there are 11 connected components in this graph,
which are interpreted in Section 6. Figure 8 and Figure 9
show the largest and the second-largest connected compo-
nent of the co-occurrence graph, respectively. Please note
that node size is proportional to node frequency.

6. Biological Interpretation and Discussion

The candidates/protein clusters that showed top scoring
modularities recapitulated many of the cellular phenotypes
characteristic of cancer cells.

In the co-occurrence graph, there are 4 proteins out of 37
that find correspondence in PAMS0.

In H, the largest connected component, which is com-
posed of approximately 30 proteins, showed great internal
consistency in its proteins with respect to their quantitative
pattern across the tumor cohort, and reflected one of the
most well known hallmarks of cancer, proliferation. Tumors

Correlation Coefficient

Figure 7: There is a correlation between the top candidates.
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Figure 8: Largest Connected Component of H.

can generally be divided into fast-growing, i.e., prolifera-
tive, or slow-growing. This subdivision somewhat relates
to the PAMS50-based classification since most basal-like tu-
mors tend to be highly proliferative, whereas most Lumi-
nal A and normal-like tumors tend to be slow-growing, but
there is a mixed picture among the HER2 and Luminal B
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Figure 9: Second-Largest Connected Component of H

groups. At cellular level, several processes are conducive
of this hallmark, and our current analysis highlighted lo-
cal protein groups within the largest connected component
(Figure 8). Thus, RRM2 and DHFR are enzymes carry-
ing out nucleotide synthesis, required for DNA replication,
which is a process initiated by the GINS complex (GINSI,
GINS2, GINS3). And since DNA replication is a sensitive
step, in which DNA is exposed to damage, one also observes
a number of DNA repair proteins elevated in highly prolifer-
ative samples, such as KIAAO101 (a.k.a. PCLAF), UBE2T,
DTL, and FANCI. The latter protein also assists in main-
taining chromosomal stability, since the process of dupli-
cating chromosomes is dangerous for their integrity. Also
important for DNA and chromosomal integrity during this
mitotic process are TOP2A, NCAPG and MKI67. Mito-
sis is the process of cell division/duplication. Many pro-
teins that promote cell cycle progression into mitotic state
are also elevated (in highly proliferative samples), such as
CCNB1, DLGAPS, PBK and ATAD2. This latter one is par-
ticularly interesting since it mediates estrogen-induced pro-
liferation, estrogen being a fundamental hormone for breast
tissue. Many of the proteins involved in the actual struc-
ture of the mitotic spindle (namely NUSAP1, SHCBP1, KN-
STRN, RACGAPI, KIF4A, and KIF23), which supports and
aligns the duplicated chromosomes during mitosis, are also
found in the largest connected component. And finally, the
actual driver proteins of cytokinesis, which motor the chro-
mosomes to the opposing cell poles during cell division are
also found here, SKA1, SKA3, KIF20A, CENPU, and CENPI
(Figure 8).

The second-largest connected component of H, which
is made of 20+ proteins as shown in Figure 9, pointed to
a group of proteins involved in extracellular matrix (ECM)
homeostasis, including serine proteases and a metallopro-
teinase (CORIN, HTRA1, ADAMTS16) which cleave and
trim substrates at the cellular surface, as well as proteins in-
volved in glycosylation (GXYLT2, CHSY3). Other ECM
related proteins are also found (KERA, ITGBL1, SSC5D,
COMP). Intriguingly, several proteins with known retinal

and corneal functions (HTRA1, KERA, ITGBLI1, SLC24A2,
and SFRP2) as well as proteins involved in synaptic plastic-
ity in neurons (SORCs2, SYNDIG1, LAMP5) and proteins
involved in collagen modulation (OMD, COMP, PAHA3) and
cartilage development (CILP, TNS4) are found in this net-
work. This suggests another familiar pattern in cancer cells
taking place, that of expressing proteins with normal but
rather specific functions in other tissues to the advantage of
the tumor. It is notable that among these collagen and carti-
lage related proteins, several are involved in apoptosis (con-
trolled cell death) regulation via caspase-3. Moreover, those
proteins which suppress apoptosis (OMD, COMP) showed
very similar quantitative patterns across the patient cohort,
whereas the apoptosis promotor (TNS4) showed a rather op-
posing quantitative pattern. Finally, three proteins involved
in Wnt signalling are also found here (SFRP2, SFRP4, and
WISP2). Wnt signaling transduces signals of paracrine (i.e.
from neighbouring cells) or autocrine origin into alteration
of gene expression in the cell. Wnt signaling normally has
functions in embryonic development and adult tissue regen-
eration, but it is well known be appropriated by cancer cells
to their advantage. This ECM component had a pattern of
expression across the tumor cohort almost opposite to the
proliferation connected component, with predominantly high
levels in Luminal A patients and low levels in Basal-like pa-
tients, and a mixed picture for the remaining subtypes.
Finally, a note on the enzymes chymase (CMA1) and car-
boxypeptidase CPA3. These are normally only expressed
by mast cells (a type of immune system cell), the pair here
shows an almost identical cross tumor expression pattern.
This suggests that possibly the tumors with high levels of
CMA1/CPA3 have more infiltration of this type of immune
system cells. This property does not relate to the classic
PAMS0 classification system with several patients from the
different subtypes showing high CMA1/CPA3 levels. This
information about the type of immune system infiltration can
potentially have decisive impact on the tumor behavior, in-
cluding how it would respond to treatment, particularly in
regards to the latest wave of cancer therapy, immunotherapy.

7. Future Work

We would like to explore further possibilities to enhance
the methods adopted in our proposed unsupervised dimen-
sionality reduction pipeline. For example, branch-and-bound
algorithm can by used as a systematic approach to enumer-
ate over the possible candidate solutions. Particularly, this
algorithm represents the the search space as a tree with pos-
sible solutions and explores branches of this tree that maxi-
mize the objective function. Furthermore, we would like to
incorporate different scoring functions in addition to modu-
larity for the candidate evaluation step. Lastly, the majority
of candidates are small and the high-performance candidates
are isolates. For this reason, it might be desirable to merge
two smaller candidates into one larger candidate and check
if this merge brings any gain in terms of modularity. Ac-
cordingly, applying forward stepwise selection approach by
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adding independent features one at a time might be promis-
ing.

Since it is not certain that we find anomalies that might
actually indicate breast cancer, it was necessary to manually
double-check the results of the experiments against what we
know about the identified candidate proteins. Despite over-
lapping, the large number of candidates justifies offering an
automatic interpreter that supplements the results of the ex-
periments. We plan to augment them by including external
data sets such as Gene Ontology (GO) [1, 5]. It might be
helpful to add the information about the roles of the pro-
teins inside the cells, so that we can provide a brief overview
of which biological processes are affected by the extracted
anomalies. It might be helpful on a theoretical level because
it could help indicate proteins worth examining in ad-hoc
laboratory experiments.

8. Conclusion

We hereby propose a three-step wrapper method for the
discovery of connected protein networks underlying particu-
lar molecular and cellular processes which characterize dis-
tinct behaviors in tumors in a manner agnostic/independent
of the current PAMS50-based breast cancer classification. Cur-
rent patient stratification procedures for treatment assign-
ment are often inadequate with many heterogeneous responses
to a treatment within the same subtype. This is because the
current classification is still too coarse, with many biologi-
cal processes important for response outcomes not yet pin-
pointed.

By reducing the scope of investigation to a few sets of
proteins at a time, it is possible to highlight the differences
between the samples. For this reason, we generate candi-
dates by splitting the feature set. In order to take advantage
of Spectral Clustering, it was necessary to convert the data
to a feature graph where the affinity between the proteins
drives the splitting process. Large numbers of candidates
were generated and it was necessary to evaluate them accord-
ing to how good they performed on the task of clustering the
samples. Candidates that are better than the state-of-the-art
classification of breast cancer cells in terms of modularity
find a correspondence in what we know about the functions
of the these proteins.

Work has been done to extend the classification of breast
cancer cells based on PAMS50. Our new wrapper method is
novel because it adopts a different strategy that is not biased
because it is led exclusively by the cancer data. While some
highlighted proteins are already known to relate to breast
cancer, some are new and we believe it is worth examining
them in depth. It is necessary to double-check that the pro-
teins in the strong candidates are actually playing a role in
the onset of the disease, and we performed an analysis at the
theoretical level, manually. This is not scalable, but it serves
the purpose of demonstrating the potential of the application
of feature selection to breast cancer classification.

Relative to domain expertise-agnosticism, our method
does not depend on a body of specialist knowledge, and con-

sequently it is independent from our current comprehension
of cancer biology. The first option of candidate generation
analyzes the breast cancer data only, whereas the second op-
tion expands the search space by importing data from CO-
RUM. We focused on CORUM, but it is easy to integrate
other external data sets. Even if addition of external data

might seem contradictory with the domain expertise—agnosticism

requirement, we argue that no knowledge of the data, apart
from its structure, is needed to take advantage of it and fur-
thermore the external data is specific to proteins but not to
cancer. However, it is worth remembering that the quality
of the candidates of the second option depends on the qual-
ity of the external data, since these data sets are likely to be
incomplete or biased.

As we have already mentioned, feature filtering is op-
tional. It was added at a later time to deal with the space and
time complexity of the algorithm caused by the large num-
ber of candidates generated. While it is optional, we believe
it is worth losing some candidates in return for a speeding
up of the pipeline. Indeed, we have seen a marked decrease
in the number of candidates, but at the same time, the range
of modularity has not been affected.

The main goal of this work is to help biologists with
the identification of the markers of cancer types and sub-
types. There are various treatments for cancer, but the fun-
damental idea is to treat each patient appropriately by adapt-
ing the treatment to the particular tumor phenotypes, which
are essentially defined by the amount of individual proteins
in the cancer cells. Course of treatment selection is based
on the state-of-the-art classification of breast cancer tumors,
but this is currently based on data obtained at the transcript
(mRNA) level. Drugs are designed to target particular pro-
teins, not their mRNA precursors. Thus, there is still much
room for improvement. The study and treatment of cancer
will undoubtedly benefit from the study and analysis of com-
plex and comprehensive cancer proteomics data sets.
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