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Abstract—It is indisputable that physical activity is vital for an
individual’s health and wellness. However, a global prevalence of
physical inactivity has induced significant personal and socioe-
conomic implications. In recent years, a significant amount of
work has showcased the capabilities of self-tracking technology to
create positive health behavior change. This work is motivated by
the potential of personalized and adaptive goal-setting techniques
in encouraging physical activity via self-tracking. To this end,
we propose UBIWEAR, an end-to-end framework for intelligent
physical activity prediction, with the ultimate goal to empower
data-driven goal-setting interventions. To achieve this, we ex-
periment with numerous machine learning and deep learning
paradigms as a robust benchmark for physical activity prediction
tasks. To train our models, we utilize, “MyHeart Counts”, an
open, large-scale dataset collected in-the-wild from thousands of
users. We also propose a prescriptive framework for self-tracking
aggregated data preprocessing, to facilitate data wrangling of
real-world, noisy data. Our best model achieves a MAE of 1087
steps, 65% lower than the state of the art in terms of absolute
error, proving the feasibility of the physical activity prediction
task, and paving the way for future research.

Index Terms—physical activity prediction, goal-setting, self-
tracking, machine learning, deep learning, data preprocessing,
personal informatics, prescriptive framework

I. INTRODUCTION

According to the World Health Organization (WHO), phys-
ical inactivity is one of the leading risk factors for noncom-
municable diseases and death worldwide, inducing substantial
personal and societal cost [1]. On a personal level, it signifi-
cantly increases the risk of cancer, heart disease, and diabetes,
and it is estimated that up to five million deaths per year
could be prevented if the global population were sufficiently
active. Deteriorating population health also comes with a
growing societal burden in terms of medical care and loss
of productivity. Recent estimates show that physical inactivity
has led to US$ 54 billion expense for the health system and
US$ 14 billion in indirect economic losses in the US alone,
while worldwide, 1–3% of national health care expenditures
can be attributed to physical inactivity [1].

A significant challenge towards reducing the global preva-
lence of physical inactivity is encouraging individuals who
are not sufficiently active to alter their behavior and include
physical activity in their daily routine. To this end, research has
shown that interactive technology can be strategically designed
to motivate desirable behavior change, such as regular exercise

and healthy nutrition [2], for better population health and well-
ness. At the same time, investing in technological tools and
resources for promoting regular physical activity can directly
contribute to many of the United Nations’ 2030 Sustainable
Development Goals [3]. Overall, across all settings, there are
opportunities for digital mHealth innovations to harness the
potential of data to promote, support, monitor, and sustain
health behavior change, focusing on physical activity.

The U.S. Department of Health and Human Services rec-
ommends the equivalent of at least 150 minutes of moderate-
intensity aerobic activity each week to rip the benefits of
regular exercise [4]. Simplifying these guidelines into some-
thing concrete and relatable, such as daily step counts, is an
easy way for the majority of the population to understand
and achieve them. Specifically, daily step counts between
7,000 and 9,000 steps can result in health benefits similar to
achieving the recommended amounts of moderate-to-vigorous
exercise [5]. To this end, considerable research efforts have
been made for developing effective technological interventions
to help people achieve the recommended step counts. Amongst
the most common and successful persuasive design techniques
utilized in such interventions is goal-setting, i.e., setting a daily
number of target steps for the user to achieve [6].

The most straightforward goal-setting approach, used in
most commercial physical activity trackers, is the fixed goal
approach, where the system sets a fixed goal for the user.
However, this approach may lead to unrealistic goals, as it does
not consider the singularity of an individual’s behavior. At the
same time, research shows that a personalized and adaptive
goal approach performs better in increasing adherence and
physical activity levels [7], by tailoring the system to enhance
motivational appeal. In this approach, the system monitors the
daily behavior of the user, such as physical activity, sleep, and
stress levels, and then personalizes their step goal based on a
combination of factors. At the same time, it adapts over time
to incorporate possible changes in user behavior.

Previous works have attempted to tackle the task of per-
sonalized and adaptive goal-setting by employing statistical
models for time-series forecasting or domain-expertise-based
estimates of step goals tailored to different user groups (see
Section II). However, the focus is currently shifted towards
more intelligent approaches, which provide state-of-the-Art
(SotA) performance for the task of physical activity prediction
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[7, 8]. Nevertheless, the field of physical activity prediction for
adaptive goal-setting is still in its infancy, and SotA approaches
suffer from various limitations discussed below:

Small-scale & Subjective Experimental Data (L1): Prior
work relies on small-scale datasets that are constructed and
designed according to conceptual or theoretical interests with
articulated research questions, and collected by users partic-
ipating in ongoing research, which can lead to a distorted
reflection of the actual levels of their daily activity [9];

Challenging Data Wrangling (L2): There are only scat-
tered guidelines concerning preprocessing techniques suitable
for handling the idiosyncrasies of real-world, noisy time-
series data generated by personal informatics self-tracking
systems, contrary to popular domains, such as natural language
processing or computer vision;

Lack of Physical Activity Prediction Benchmarking (L3):
Limited studies exist in the area of predicting physical activity
levels by exploiting machine learning and deep learning ap-
proaches for enabling personalized and adaptive goal-setting.
Even then, the exact architectures and hyperparameters utilized
remain unspecified, and a comprehensive benchmarking of
relevant approaches is yet to be published;

Reproducibility & Reusability Issues (L4): Due to the
limitations introduced by closed-source data and code repos-
itories, reproducibility of published results and reusability of
existing code and models for the task of personalized goal-
setting is close to infeasible at this moment.

Fig. 1. The UBIWEAR framework covers the path of physical activity data
from its acquisition to its application scenarios.

Motivated by the issues above, this work proposes UBI-

WEAR, a five-step, data-driven framework for the task of
physical activity prediction with the end goal of enabling
personalized and adaptive goal-setting interventions via self-
tracking. The framework comprises the complete process from
physical activity data acquisition to end-user applications.
Figure 1 depicts UBIWEAR’s pipeline. Our contributions are
structured around the framework’s steps:

C1 - In-the-wild Data Exploitation: We discuss the avail-
ability of open datasets for physical activity prediction, and the
idiosyncrasies of self-tracking data. Ultimately, we utilize the
openly accessible “MyHeart Counts” dataset [10], containing
real-world, large-scale physical activity patterns for thousands
of users, allowing us to better capture different segments of
the population and build generalizable prediction models. The
dataset has been collected in-the-wild, presenting an objective
view of the users’ behavior (L1).

C2 - Self-tracking Data Processing Guidelines: We in-
troduce a set of prescriptive guidelines on how to process
aggregated data from self-tracking devices, accompanied by
a Python library release 1. Derived from our exhaustive ex-
perimentation, we propose specific adaptation methodologies
for traditional preprocessing techniques explicitly designed
to handle self-tracking data idiosyncrasies. Our goal is for
these guidelines to provide a more standardized definition of
processing self-tracking data (L2).

C3 - Physical Activity Prediction Benchmarking & Eval-
uation: We experiment with six different learning paradigms
for physical activity prediction, from machine learning to
advanced deep learning architectures, and benchmark their
performance for this complex learning task (L3). Through
the experimentation with more advanced architectures, UBI-
WEAR achieves a MAE (Mean absolute error) of 1087 steps,
65% lower in terms of absolute error than that of the SotA
model [11], proving the feasibility of intelligent physical
activity prediction.

C4 - Open Access Data and Code: We purposefully work
with an open-access dataset and publicly share our codebase 2

to enable the reproducibility of our results. To further facilitate
future interdisciplinary research, we also adopt containeriza-
tion and offer step-by-step guides on how to download, store
and preprocess the data, as well as on how to reproduce our
results with the uploaded pre-trained models (L4).

We structure the remaining of this paper as follows: Sec-
tion II discusses the related literature in physical activity
prediction and personalized goal-setting. Sections III-VII in-
troduce the UBIWEAR framework from data acquisition to
self-tracking data processing, modeling and evaluation to
applications of insights. Finally, Section VIII concludes the
paper and delineates ideas for future work.

II. RELATED WORK: INTELLIGENT PHYSICAL ACTIVITY
PREDICTION FOR PERSONALIZED GOAL-SETTING

An emerging body of work is trying to tackle the lack of
intelligent goal-setting systems by publishing studies of sta-

1https://pypi.org/project/ubiwear/
2https://github.com/stergiosbamp/deep-physical-activity-prediction
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tistical, rule-based, machine learning- or deep learning-based
physical activity prediction solutions that take into account
historic data to provide realistic and achievable exercise goals.

Van Dantzig et al. [12] developed a context-aware coaching
system that adapts to each individual by taking into con-
sideration factors such as context, and historical patterns of
behavior. Similarly, “Active2Gether” [13] is a coaching system
that utilizes the behavioral characteristics of users and social
comparison to provide personalized feedback. However, the
most fundamental component of both systems, namely the
reasoning engine that determines what type of support the
user should receive, relies on a purely rule-based approach
rather than a predictive one, limiting its extensibility potential.
With regards to statistical forecasting approaches, Zhou et al.
[14] investigated the effectiveness of personalized automated
adaptive step goals, in comparison to fixed 10000 daily step
goals. Their findings revealed that the intervention group had
statistically significant more daily steps than the fixed steps
goal group, but only few details were provided about the
behavioral algorithm used.

Closer to our work, Dijkhuis et al. [15] developed a ma-
chine learning system that aimed to predict whether or not
an individual will meet their daily step goal. The authors
benchmarked eight traditional machine learning models, but
oversimplified the task of predicting activity goals as a binary
decision. To bridge this gap, Vasdekis et al. [8] developed
a framework for machine learning-based physical activity
prediction formulated as a regression task. While they explored
a variety of significant contextual factors, their small-scale
dataset might not be representative of the general population,
while it prohibited them from bechmarking data-hungry SotA
deep learning approaches. Mohammadi et al. [11] experi-
mented both with traditional machine learning and a neural
network architecture to predict a dynamically adjusted daily
number of steps based on personal, environmental, and social
factors. However, their experimentation was solely based on a
small-scale dataset and they did not provide any information
concerning the deep learning architectures and hyperparame-
ters used, limiting the reproducibility and reusability of their
approach. Their SotA “BRIDGE” model achieved a MAE of
1672 steps, 65% higher than our proposed approach.

It is evident that only a limited number of studies ex-
ploit machine learning or deep learning techniques for the
task of physical activity prediction for enabling personalized
and adaptive goal-setting, even though SotA models provide
significantly superior performance in similar tasks, such as
human activity recognition or sleep stage classification. This
gap motivated our work and guided UBIWEAR’s methodology
as will be presented in detail in the following sections (III-VII).

III. DATA ACQUISITION

A motivation serving as the backbone of our framework
is the peculiarities that materialize the problem of predicting
future physical activity with machine learning. Although it
can fall under the abstract category of time-series forecasting

problems, the self-tracking data idiosyncrasies perplex the
problem and thus require particular attention. The UBIWEAR
framework is designed with the following in mind:

• Raw data collected from sensors or wearables are sam-
pled in arbitrary frequencies contrary to traditional time-
series data.

• Physical activity datasets are guaranteed to be a multi-
subject time-series sequences.

• Multiple input devices and overlapping records due to
different users can introduce duplicates.

• Consecutive records cannot be assumed in a real-world
scenario as users do not necessarily track their activities
on a daily basis (no-wear time).

On top of the above-mentioned peculiarities, data acquisi-
tion for physical activity prediction is challenging; collecting
proprietary data requires a significant monetary and time
investment, while open datasets are limited and include di-
verse data modalities. Popular small-scale (in terms of sample
size) datasets include the Extrasensory dataset (N=60 users)
containing a wide range of sensor data combined with activity
and location labels [16]; and the StudentLife dataset (N=48)
comprised of continuous sensor data, self-reports, and various
pre-post surveys combined with activity, mental health and
academic performance labels [17]. On a larger-scale, the
FitRec datasets contain user sport records from Endomondo,
including multi-modal sequential sensor data and contextual
information [18]. In this study, we utilize a recent, large-scale,
in-the-wild dataset from the “MyHeart Counts Cardiovascular
Health Study” [10]. In this study, participants contributed
health data via an iPhone application, related to physical
activity, fitness, sleep, and overall health for studying the
patterns and any potential associations between them. We keep
a subset of recordings relevant to our task, i.e., the number of
steps that were recorded by the device at a particular time. Our
final dataset contains 9,154,490 examples for total of 4,747
unique users of diverse gender, ethnicity, physical and health
condition.

IV. DATA PROCESSING FOR SELF-TRACKING DATA

As discussed in Section I, there are no concrete guidelines
for the preprocessing of aggregated self-tracking data, despite
the idiosyncrasies of the task. Following our data acquisition
step, we move to data processing by introducing a series of
prescriptive guidelines as part of the UBIWEAR framework
(Figure 2). They consist of four components, namely Data
Cleaning, Feature Engineering, Time-series Transformations,
and Machine Learning Preparation. Each generic component
is composed of traditional data pre-processing steps, tweaked
for the self-tracking data domain.
Data Cleaning. We initiate data cleaning by removing dupli-
cate records, i.e., records with the same timestamp for a single
user. Given the multi-subject and multi-device nature of self-
tracking data, duplicate elimination significantly differs from
traditional time-series processing. Specifically, self-tracking
duplicates removal should be performed on a user-by-user
basis, while caution should be given in cases of multiple input
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Fig. 2. An illustration of the data processing pipeline.

devices, as overlapping records can introduce duplicates. We
proceed by removing the outlier dates and values. Outlier
dates can arise from missing or corrupted dates in the raw data.
To overcome this issue, we preserve the dates that correspond
to the intervention duration, and drop any remaining missing
dates. With regards to outlier step values, there are different
sub-cases of outliers, and the decision of how to define them
must be chosen carefully. In this work, we adopt the quantile
method, for the removal of outlier values and avoid aggressive
cut-offs. Also, time-series analysis requires that our time-
series data be recorded in fixed-time intervals, so we need
to achieve a unified granularity. Self-tracking resampling
should be performed only after verifying common granularity
for all input sources. In case of arbitrary sampling frequencies,
record drops or value splits should precede resampling. The
first approach (record drops), adopted in this work, is to drop
low frequency records since they represent a small percentage
of our dataset. A more sophisticated approach (value split) can
be to divide these coarser granularity values by the number
of daily active hours, and assign it to the hourly records
per example. Next, during user filtering, we filter out any
users that do not have the necessary number of days for the
requested window size. Note that the larger the requested
window size, the stricter the filtering criteria, and hence less
users are included in the final dataset. Finally, we proceed
with zero values imputation. Zero values observations can
be reasonable in the night hours, but in the daytime inactivity
is usually caused by forgotten self-tracking devices. Based on
that intuition, zero values imputation should be performed only
for active hours.
Feature Engineering. Feature Engineering includes the trans-
formation of raw data into meaningful variables. A common
practice in a majority of time-series problems is to enhance the

feature space with features that are derived from timestamps
(e.g., hour, day, week, month), as well as their sin and cos
transformations to capture the cyclic nature of time [19].
Furthermore, features such as bank holiday and or weekend
can facilitate time-series forecasting [20].
Time-series Transformations. The sliding window tech-
nique allows treating the problem of physical activity pre-
diction as a time-series forecasting problem. Specifically, self-
tracking windowing should consider sliding windows for daily
granularity and tumbling windows for hourly granularity to
avoid excessive overlap of records. Care should be given to the
target variable to represent daily (or higher) aggregate counts,
in the case of hourly (or finer) granularity.
Machine Learning Preparation. The Machine Learning
preparation step allows us to prepare our data to be fed into
our learning models, including a train-validation-test split.
However, in self-tracking data we need to respect chronolog-
ical order i.e. no shuffling. Since we utilize neural networks,
feature and target scaling is almost a mandatory step to
ensure that the gradient descent moves smoothly towards the
minima and that the steps for gradient descent are updated at
the same rate for all features [21].

V. MODELING FOR PHYSICAL ACTIVITY PREDICTION

An important contribution of our work is the exhaustive
benchmarking of the various learning models in the previ-
ously unexplored domain of physical activity prediction for
enabling personalized and adaptive goal-setting. Under this
spectrum, we explore both machine learning and deep learning
approaches to provide a comprehensive comparison.

In the machine learning category, we study three families of
algorithms: linear models, tree models, and ensemble models.
For the case of linear models, we choose the Ridge regressor
[22] to minimize the multicollinearity of our data. Due to the
hourly granularity, the number of features that arise is high
enough. Thus, we believe that the regularization penalty to the
loss function would be beneficial. In the case of tree models,
we opt for decision trees, where we select the squared error
function to measure the quality of a split which minimizes
the L2 loss using the mean of each terminal node. The third
family of algorithms we explore is ensemble learning, and
specifically the Gradient Boosting Regression [23], because
of its capability to reduce both bias and variance in the data.

To achieve an end-to-end benchmarking of physical activity
prediction, we also investigate how deep learning models of
various architectures fit this task. We scrutinize and apply
four different types of architectures. Multilayer Perceptrons
(MLPs), 1-D Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) with long short-term
memory (LSTM) cells. MLPs is a classic category of neural
networks that can be applied in time-series problems by having
one output node in the last layer which emits the actual
regression value. 1-D CNNs are considered state-of-the-art in
the signal processing domain, with their remarkable ability to
automatically extract locality features in the time dimension.
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Last but not least, RNNs are well-suited for approaching time-
series problems by catching temporal dependencies along with
the input sequence. With regards to the deep learning models,
we designed a high-level overview of the optimal architectures
that yielded the best performance, following an exhaustive
architectures analysis and hyperparameter tuning via trial and
error discussed in Section VI-B.

VI. EVALUATION & IMPLICATIONS

In this section we present our experimentation with data
processing (VI-A) and modeling benchmarking (VI-B).

A. Effects of Data Processing on Physical Activity Prediction

To conclude on the final dataset, we conduct a number
of experiments regarding UBIWEAR’s processing steps. Our
data processing evaluation is relied on a time-aware train-
validation-test split of our data, and we select the Ridge
regressor as the baseline model in this experiment due to its
ability to provide quick and accurate results.

With regards to optimal granularity & window size, we
experiment with hourly and daily aggregation of the data,
while we simultaneously experiment with the window size (1-
6 days) to obtain more fine-grained results (12 combinations
in total). Given that the goal is to provide a model that
can be deployed in the real-world, waiting to gather more
than a week’s data is neither user-friendly nor practical.
The difference in error for every window size (MAE>500
steps) allows us to deduce that hourly granularity outperforms
daily granularity in every case. In terms of window size, the
performance of a 3-day window is comparable to this of larger
windows. The improvement in MAE and MdAE between the
2-day and 3-day windows (MAE2 = 1417 and MAE3 = 1361)
is higher than the improvement between the 3-day and larger
windows (MAE4 = 1327, MAE5 = 1300 and MAE6 = 1281).
This evidence in conjointment to the practicality of smaller
windows drives us to select three as the optimal window size.

In addition, we investigate whether the addition of date
features and cyclical transformations can benefit the models
compared to step features only. We have observed that in
terms of MdAE the steps only dataset yields the best re-
sults (MdAEsteps only = 392.14, MdAEsteps date features =
446.73, MdAEsteps cyclic features = 574.41), while the MAE
scores are comparable. We assume that this is due to the high
overlap of different users’ records in our dataset. In other
words, by extending the feature space with the date features for
the same timestamps but different user behavior, we essentially
introduce noise to our machine learning models by diverting
attention from the actual activity data.

We finally experiment with removing the outlier values
based on the quantiles method with q = 0.05. Based on our
results, we can deduce that indeed outliers removal boosts
the performance of the model, by excluding individual ab-
normal patterns from our data and provides more conclusive
predictions in unknown cases (MAEkeep outliers = 1887.16
and MAEremove outliers = 1307.01).

Overall, we proceed to the models’ benchmarking with a
dataset consisting of 3-day windows of hourly granularity,
without imputation of missing data, and having undergone
outlier removal (both for dates and values with a q = 0.05),
as this combination of preprocessing steps shows the best
performance for the “MyHeart Counts” dataset.

B. Benchmarking Deep Learning: Does it match the hype?

As discussed previously, for the modeling procedure we
divide our dataset into three sets: training, validation and test
set (no shuffling). We utilize the validation set for the hyper-
parameter tuning of the models to provide the optimal results.

TABLE I
PERFORMANCE BENCHMARKING FOR ALL ML & DL MODELS.

Model Dataset Metrics

MAE MdAE

Ridge
Train 1372.889 458.038
Test 1359.766 390.271

Decision Tree
Train 1428.906 592.652
Test 1478.086 224.101

Gradient Boosting
Train 1209.139 463.878
Test 1222.738 135.668

MLP
Train 1148.293 296.582
Test 1094.822 0.082

CNN
Train 1167.130 284.548
Test 1099.581 11.110

RNN (LSTM)
Train 1171.620 280.274
Test 1087.838 0.855

For the classic machine learning models, we find the best
hyperparameters per paradigm through a grid search, time-
series-based cross-validation technique with 5 splits. For the
deep learning models, we identify the optimal hyperparameters
by experimenting with various combinations of learning rate,
dropout, hidden units, batch size, optimizer, kernel size, pool-
ing and stride, per each architecture. Figure 3 delineates the
final architectures for the MLP, RNN and CNN, accordingly.

Table I shows the overall modeling outcomes against the
train and test datasets. The best performing model is found to
be the RNN achieving 1087 MAE and only 1 step of MdAE,
confirming the assumption that RNNs are able to capture
temporal dependencies in time-series problems. Equally well
performance is delivered by a 3-layered feed-forward network
(MLP) with almost similar results on the hold-out set. The
lower MdAE from MLP can be justified on the intuition that
predictions from this architecture are more robust to outlier
examples, in contrast to the ones from RNN architecture.
However, this difference is negligible since RNN can predict
the overall cases more efficiently. The CNN proved unsuitable
for extracting features from the convolution operation although
we utilized a fairly large kernel size given the temporal
features. Despite that, the deep learning models deliver almost
1.25 times better performance than a simple regression model
(e.g., Ridge) in terms of MAE, but the required computational
resources and training time are significantly higher, a fact that
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Fig. 3. The final architectures of the MLP (left), RNN/LSTM (center), and 1D-CNN (right) regressors, respectively.

should be considered before deducing that neural networks are
the proper fit for every task. This is also more apparent in the
case of deployment of such models for delivering interventions
based on predictive modeling in wearable devices, where that
computational resources are limited.

VII. UBIWEAR APPLICATIONS

A vital question emerging is how our work and ultimately
machine learning-based solutions for physical activity pre-
diction can be embraced in real-world scenarios. Through
our research, we provide some indicative use cases in which
UBIWEAR can be applied.

First and foremost, by predicting personalized physical ac-
tivity levels from the unique users’ data, we can infer adaptive
and challenging future step goals by increasing the predicted
step goal by 10%. Research has shown that activity goals
proximate to personal levels for each individual can be ad-
vantageous for encouraging them and maintaining motivation
to complete daily physical activity goals [7]. Even industrial
wearables software and mHealth services for exercise can
integrate our pre-trained models and inject into their system
our predictions, to adapt to the specificities of each person and
deliver intelligent future step goals. Furthermore, in a similar
manner UBIWEAR can be adopted in randomized controlled
trials (RCTs) to study behavioral changes in different groups
of users. The outcome of such a procedure can benefit behav-
ioral transformation interventions in a majority of healthcare
applications that promote healthy lifestyle habits from different
disciplines such as medicine or pharmacy. Therefore they can
focus on the development of the clinical support systems and
alleviate the cost of conducting an end-to-end, time-consuming
pipeline and designing a machine learning system from scratch
for that purpose.

VIII. DISCUSSION & CONCLUSIONS

Despite our contributions, it is essential to acknowledge
some limitations of our work. Given the little related work and
the lack of open-source benchmarking datasets in the domain,

it is infeasible to provide a systematic comparison with rele-
vant algorithms. We hope that by focusing on reproducibility,
we pave the way for future research in the field. Additionally,
one should be cautious about applying the pre-trained mod-
els to different populations. The “MyHeart Counts” dataset,
despite its great potential, has certain limitations in terms of
demographic diversity. Hence, the applicability of the trained
models for diverse subgroups of the population needs to be
assessed before real-world deployment.

In summary, this paper addresses one of the most unex-
plored domains in wearable analytics through the introduction
of UBIWEAR, a data-driven framework for physical activity
prediction for personalized and adaptive goal-setting. Under
this spectrum, we utilize real-world in-the-wild data originat-
ing from the “MyHeart Counts” study (C1). The data exploited
are at least thirty times larger than other related studies, which
allows us to better capture different user patterns and provide
more robust and generalized prediction algorithms. We explore
both machine and deep learning approaches to provide end-
to-end benchmarking. We propose a 3-stacked RNN (LSTM)
as a SotA model for this task, achieving 1,087 MAE and 1
MdAE error in step counts given only three previous days’
data as input (C3). Our approach establishes a high standard
and prepares the ground for future work. The most time-
consuming procedure was the pre-processing pipeline tailored
to self-tracking data peculiarities. This led to the design of a set
of prescriptive guidelines and the release of an open-sourced
Python library to help researchers and practitioners with the
highly demanding task of data processing of ubiquitous self-
tracking data (C2). Last but not least, all of our work is
publicly available for data collection, data ingestion, pre-
processing, experimentation, model training, and evaluation
with pre-trained models uploaded to facilitate the reproducibil-
ity of this study (C4).
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