
Federated Naive Bayes under Differential Privacy

Thomas Marchioro1 a, Lodovico Giaretta2 b, Evangelos Markatos1 c and Šarūnas Girdzijauskas2 d

1Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Greece
2Division of Software and Computer Systems, KTH Royal Institute of Technology, Stockholm, Sweden

{marchiorot, markatos}@ics.forth.gr, {lodovico, sarunasg}@kth.se

Keywords: Federated Learning, Naive Bayes, Differential Privacy.

Abstract: Growing privacy concerns regarding personal data disclosure are contrasting with the constant need of such
information for data-driven applications. To address this issue, the combination of federated learning and
differential privacy is now well-established in the domain of machine learning. These techniques allow to
train deep neural networks without collecting the data and while preventing information leakage. However,
there are many scenarios where simpler and more robust machine learning models are preferable. In this paper,
we present a federated and differentially-private version of the Naive Bayes algorithm for classification. Our
results show that, without data collection, the same performance of a centralized solution can be achieved on
any dataset with only a slight increase in the privacy budget. Furthermore, if certain conditions are met, our
federated solution can outperform a centralized approach.

1 INTRODUCTION

The emergence of the Internet of Things and the per-
vasive use of Internet-enabled technologies have fa-
cilitated the process of gathering and collecting data,
from a myriad of sources and with ever-increasing
granularity. This in turn has led to the development
and deployment of a vast array of data-driven tech-
nologies ranging from smart home products to medi-
cal wearable devices (Shafagh et al., 2017).

However, this has sometimes come at the detri-
ment of personal privacy. Many organizations col-
lect sensitive personal information about their users
or customers, and thanks to the high granularity and
broad scope of many data gathering processes, track-
ing individual users across data collections is danger-
ously feasible (Marchioro. et al., 2021). Due in part
to high-profile data misuse incidents and to the ever-
increasing threat of data exfiltration attacks (Ullah
et al., 2018), many users and regulators have grown
aware of the importance of ensuring a certain degree
of personal privacy in the handling of user data.

In the context of machine learning, this has led
to the growing popularity of Federated Learning
(McMahan et al., 2017), a paradigm in which a group

a https://orcid.org/0000-0003-3353-102X
b https://orcid.org/0000-0002-0223-8907
c https://orcid.org/0000-0003-3563-7733
d https://orcid.org/0000-0003-4516-7317

of data owners can train a model on their private data,
without the need to disclose it or gather it into a cen-
tral storage. In each iteration of the process, every
participant computes local updates of the model pa-
rameters, which are sent to a central aggregator and
merged.

While Federated Learning removes the need to di-
rectly share private data, it may still leak sensitive in-
formation to third parties. The most obvious leak is
given by the fact that the central aggregator, by com-
paring the previous model version and the update pro-
vided by a participant, may reconstruct the training
data used by that participant (Zhu et al., 2019). How-
ever, even assuming that the aggregator is trusted, re-
search has shown that it is sometimes possible to re-
construct data used during training just by inspecting
or querying the resulting trained model (Salem et al.,
2018).

A robust approach to prevent these leaks is the use
of Differential Privacy (Ji et al., 2014), a family of
techniques that consists of injecting into the compu-
tation process noise sampled from specifically-crafted
distributions. Thanks to its strong mathematical guar-
antees, Differential Privacy has become a de-facto
standard in privacy-preserving machine learning.

Most work combining Federated Learning and
Differential Privacy has focused on deep neural net-
works, trained using stochastic gradient descent tech-
niques. However, not all applications require this

level of model complexity and capacity. In many
cases, extremely simple but very robust models, such
as Naive Bayes classifiers, are preferable (Zhang,
2004).

Therefore, in this paper we develop and evalu-
ate the first (to our knowledge) implementation of a
differentially-private Naive Bayes classifier in a fed-
erated setting for horizontally-partitioned data. Con-
trary to typical federated learning, federated Naive
Bayes is trained with a single communication step,
without requiring multiple iterations, thus being fast
and efficient.

Our results show that the federated approach
can reach the same accuracy as a centralized,
differentially-private implementation, but requires a
slightly higher privacy budget (i.e. slightly higher
chance of information leakage). Furthermore, we
show that, when the local sensitivity in each federated
data partition is much lower than the sensitivity of the
whole dataset, our approach outperforms a centralized
one. Thus, overall, switching to a federated solution
to avoid central data collection incurs minimal or no
cost in terms of accuracy or privacy budget.

The contributions of this work are as follows:

• We provide an algorithmic implementation for
Federated Naive Bayes under Differential Pri-
vacy;

• We extensively evaluate how the accuracy of the
model varies under different choices of privacy
budget and data distribution;

• We discuss several potential extensions to our
algorithm, including online parameter updates,
byzantine resilience and full decentralization.

2 BACKGROUND

In this section we introduce the core concept of the
original Naive Bayes algorithm, along with the defi-
nition and some useful properties of differential pri-
vacy, which will serve as a background to understand
the rest of the paper. The symbols used through the
discussion are summarized in Table 1.

Naive Bayes The Naive Bayes algorithm is used to
train a model for sample classification, meaning that
it leverages a training dataset (X ,Y) ∈ X n × Y n to
learn a function ĝ : X → Y that maps an example
x ∈ X to a class y ∈ Y . The classification rule is
based on the maximum a posteriori probability crite-
rion (MAP), which chooses the class maximizing the
posterior probability pY |X (y|x). This is computed ac-

Table 1: Notation used in the paper.

ε Privacy budget
n Size of the training set
ny Number of training examples in class y

m f vy Number of training examples in class y
with categorical feature f equal to v

µ f y Mean value of feature f for class y
ς f y Second moment of feature f for class y
σ2

f y Variance of feature f for class y
□(i) Value □ computed on the i-th partition
□[k] k-th sample of □

N Number of dataset partitions
C Number of classes

Fcat Number of categorical features
Fnum Number of numerical features
Fcat Set of categorical features
Fnum Set of numerical features

cording to the Bayes rule (hence the name):

ŷ = argmax
y∈Y

pY |X (y|x) = argmax
y∈Y

pY (x)pX |Y (x|y) (1)

where the term pX (x) at the denominator is neglected
as independent from y. A simplifying assumption
made in Naive Bayes is that the features f = 1, . . . ,F
are independent, leading to

ŷ = argmax
y∈Y

pY (y)
F

∏
f=1

pX f |Y (x f |y) (2)

The prior class probabilities pY and the conditional
probabilities pX f |Y for categorical features are esti-
mated from the training data as ratios of counts, i.e.,

pY (y) =
ny

∑y′∈Y ny′
, pX f |Y (v|y) =

m f vy

ny
. (3)

For numerical features, the standard method to esti-
mate the conditional distribution is to assume pX f |y to
be normal with density

pX f |y(x f |y) =
1√

2πσ2
f y

exp

(
−
(x f −µ f y)

2

2σ2
f y

)
(4)

where

µ f y =
∑k:y[k]=y x f [k]

ny
,σ2

f y =
∑k:y[k]=y(x f [k]−µ f y)

2

ny
.

(5)
This method of estimating the conditional distribution
is know as Gaussian Naive Bayes.

Differential privacy The main idea of differential
privacy is to perturb aggregate queries in order to pre-
vent information leakage. The formal definition is
that a randomized mechanism qε : Dn→ Q provides

ε-differential privacy (ε-DP) if for any pair of adja-
cent datasets D,D′ (i.e., differing by one single entry)
it holds

Pr[qε(D) ∈ Q]≤ eε Pr[qε(D′) ∈ Q],∀Q⊆ Q , (6)

meaning that the output distribution of qε should not
differ “too much” by changing a single entry. The
maximum variation allowed in the distribution is de-
termined by the parameter ε, which takes the name of
privacy budget. Intuitively, to a lower ε corresponds
a higher level of privacy. Two useful properties that
are used throughout the discussion are the following
(McSherry, 2009):

• P1: If m independent ε

m -DP queries are computed
on a same dataset D, then any function of these
queries provides ε-DP.

• P2: If ε-DP queries are computed on disjoint sub-
sets of a dataset D(1), . . . ,D(N),D(i)∩D(j) = /0, i ̸=
j, then any function of these queries provides ε-
DP.

For numerical queries such as count or average,
a well-established method to provide ε-DP is the
Laplace mechanism Lε. The Laplace mechanism Lε

for a query q computed on a dataset D consists in
simply adding Laplace noise to the query with scale
inversely proportional to ε:

Lε(D,q) = q(D)+ξ, ξ∼ Lap(0,
∆q

ε
). (7)

The value ∆q is the maximum variation of the query
between adjacent datasets, also called the sensitivity
of the query. In this paper, we make use of two defi-
nitions of sensitivity:

• The global sensitivity of a query q

∆q = max
D,D′
|q(D)−q(D′)| (8)

which is defined for any possible pair of adjacent
datasets D,D′. This implies that the global sensi-
tivity is always the same, regardless of the dataset
on which the query is computed.

• The local sensitivity of a query q for a dataset D

∆q(D) = max
D′
|q(D)−q(D′)| (9)

which is instead defined for datasets that differ by
one row from D1. The local sensitivity depends
on the dataset on which the query is computed.

1In practice, to compute the local sensitivity, we con-
sider the maximum variation obtained by removing one row
from the dataset.

The Laplace mechanism provides ε-DP using both
definitions of sensitivity. The main difference be-
tween the two is that global sensitivity requires to ap-
ply always the same amount of noise. For example,
counting queries have a global sensitivity of 1, mean-
ing that the required amount of noise is Lap(0, 1

ε
).

However, other queries such as sum and mean over
the samples of a dataset depend on the dataset itself,
so it is not possible to compute the global sensitiv-
ity. In such cases, we settle for using local sensitivity,
which leads to different amounts of noise depending
on the dataset.

Sensitivity of the queries As we discuss in later
sections, our algorithm makes use of two types of
queries: “count” and “sum”. It is easy to compute the
global sensitivity of a “count” query, since if you re-
move a row from a dataset, the count can change by at
most 1. For sums, instead, we compute the local sen-
sitivity, as per the above discussion. Supposing the
data we are trying to sum is v(1), . . . ,v(N), the maxi-
mum variation in the sum is given by maxi=1,...,N |v(i)|.

3 RELATED WORK

Differentially private machine learning Differ-
ential privacy has become a de facto standard to
compute statistics on sensitive data (Dwork, 2008).
Among its many applications, privacy-preserving ma-
chine learning is probably the most prominent and
studied (Ji et al., 2014). Differentially private SGD is
now a well-established training method (Abadi et al.,
2016) for neural networks, and outside the domain of
deep learning many studies have also explored classi-
cal models such as support vector machines, decision
trees, and Naive Bayes (Lopuhaä-Zwakenberg et al.,
2021). The original algorithm for a differentially pri-
vate Naive Bayes, which we extend in this paper, was
proposed in (Vaidya et al., 2013).

Naive Bayes on partitioned data Albeit simple in
its design, Naive Bayes has proven to be an effective
machine learning algorithm for classification, which
is virtually immune to overfitting (Rish et al., 2001;
Zhang, 2004). Because of its efficacy and popularity,
a number of efforts have been put into making it us-
able also on personal data. In (Kantarcıoglu et al.,
2003), the authors designed an algorithm to train
Naive Bayes on horizontally partitioned data (i.e.,
each node possesses different samples), while (Vaidya
and Clifton, 2004) proposed solution for vertically
partitioned data (i.e., each node possesses different
features from the same samples). Both solutions,

however, rely on cryptographic methods that protect
the data during the training procedure, but do not pro-
vide guarantees that information is not leaked from
the resulting model. Another method to protect hor-
izontal data partitions during training relies on semi-
trusted mixers (Yi and Zhang, 2009). An algorithm
that combines homomorphic encryption and differen-
tial privacy was proposed in (Li et al., 2018). How-
ever, the algorithm estimates conditional probabilities
of numerical features using histograms, rather than
with the standard Gaussian Naive Bayes approach.
Furthermore, the paper does not report how the accu-
racy is affected by the privacy budget and distribution
of the data among the nodes.

Federated Learning and Differential Privacy
Federated Learning was proposed in (McMahan et al.,
2017) as general framework for training deep mod-
els using gradient-based optimization techniques on
private data that are massively distributed in horizon-
tal partitions. It consists of an iterative process in
which, at each step, the data-owning devices compute
the gradient of the model on a batch of local data, and
forward it to a central aggregator. This will in turn av-
erage the gradients from all devices, update the model
weights accordingly, and then communicate the new
weights to each device to initiate the next iteration.
While Federated Learning ensures that the training
data never leaves the device of its owning entity, it
does not prevent data leakage from either the trained
model (Salem et al., 2018) or from the gradients that
are shared at each step (Zhu et al., 2019). There-
fore, (Wei et al., 2020) incorporates differential pri-
vacy in each shared gradient to protect the individ-
ual data points in each private partition. On the other
hand, (Geyer et al., 2017) employs differential privacy
within the central aggregator, thus protecting not the
identity of an individual data point, but rather of an
entire data-owning entity participating in the proto-
col.
Most studies of Federated Learning present two key
differences compared to our work. First, Feder-
ated Learning focuses on iterative gradient-based op-
timization of model weights, while Naive Bayes mod-
els are trained in a single step from simple aggre-
gate statistics of the dataset. Second, most works fo-
cus on massively-decentralized Federated Learning,
in which the number of nodes is very large and each
contains little data, typically from a single user (e.g.
next word prediction applications from the typing his-
tory stored on smartphones). On the other hand, few
works, such as (Geyer et al., 2017) and (Bernal et al.,
2021), focus on the scenario where a relatively small
number of entities, each owning datapoints from mul-

tiple individuals, cooperate to train a model.
In (Islam et al., 2022), the authors studied how dif-
ferential privacy affects the accuracy of Naive Bayes,
in a federated setting where data are vertically par-
titioned. The contribution of our work can be con-
sidered complementary, since we consider a federated
setting where data are horizontally partitioned.

4 FEDERATED SETTING

In this work, we consider a federated setting, in which
the dataset is composed of N partitions D(1), . . . ,D(N),
each held by a different entity, i.e., an organization or
an individual. Each entity stores its partition on its
own appliances and is unwilling to share these data
due to privacy concerns. Data points within a parti-
tion may, for example, represent individual users of
a service provided by the organization owning that
partition and may therefore carry sensitive personal
information. The entities wish to take part in the col-
laborative training of a joint predictive model, namely
a Naive Bayes model, as long as the following condi-
tions are satisfied:

1. each data partition D(i) never leaves the appli-
ances of the owning entity, and

2. it is not possible, from the trained model, to glean
sensitive information about individual data points
within each partition that is not already inferrable
from the rest of the data.

The first condition is met by having each entity com-
puting aggregated queries locally on its data partition,
while the second condition is met by applying the ε-
DP Laplace mechanism to the queries before disclos-
ing them. These queries are collected by a central
aggregator and used to estimate the parameters of the
Naive Bayes model. The participating entities are also
referred as of an overlay network that is used to com-
municate with the central aggregator, and they are de-
noted by their data partition (i.e., the i-th node is de-
noted by D(i)).

5 ALGORITHM DESIGN

In order to train a federated Naive Bayes model, the
central aggregator should be able to collect informa-
tion that allows to compute the prior and conditional
probabilities for each feature and class. Indeed, all
the query results must be disclosed after applying the
Laplace mechanism in order to guarantee differential
privacy. The parameter ε′ of the Laplace mechanism
is decided according to the privacy budget ε and to the

number of queries asked to each node2.
Mirroring eq. (3), prior probabilities pY (1), . . . , pY (C)
can be simply estimated by collecting from each node
D(i) the number of samples per each class n(i)1 , . . . ,n(i)C
and by computing

pY (y) =
∑

N
i=1 n(i)y

∑
N
i=1 ∑

C
y′=1 n(i)y

. (10)

Similarly, conditional probabilities for categorical
features are estimated according to

pX |Y (v|y) =
∑

N
i=1 m(i)

f vy

∑
N
i=1 n(i)y

(11)

where m(i)
f vy is the number of samples with feature

f ∈ Fcat equal to v for node D(i). For numerical fea-
tures, Gaussian Naive Bayes requires to compute the
parameters µ f y,σ

2
f y of the assumed normal distribu-

tion of each feature for each class. The mean µ f y can
be derived by querying the sample sum

S(i)f y = ∑
k:yi[k]=y

x(i)f [k] (12)

for feature f ∈ Fnum and class y from each node D(i)

as

µ f y =
∑

N
i=1 S(i)f y

∑
N
i=1 n(i)y

. (13)

For the variance σ2
f y, a straightforward solution would

be to calculate it by having each node computing the
sum of squared deviations from the sample average
µ f y, i.e.,

∑
k:y(i)k [k]=y

(x(i)f [k]−µ f y)
2. (14)

However, this solution would require two exchanges
between each node and the central aggregator, since
µ f y would need to be sent back to the nodes to com-
pute the squared deviations. A solution that enables
the central aggregator to compute means and vari-
ances with a single exchange leverages the relation
between second moment, mean, and variance, i.e.,
σ2 = ς− µ2. Therefore, in our algorithm the nodes
are asked to compute the sum of the squared samples

Q(i)
f y = ∑

k:yi[k]=y

(
x(i)f [k]

)2
(15)

and the variance is obtained by the centralized aggre-
gator as

σ
2
f y =

∑
N
i=1 Q(i)

f y

∑
N
i=1 n(i)y

−µ2
f y. (16)

2In principle, each node may have a different privacy
budget, but herein we assume there is a common value of ε

for all the nodes.

Achieving ε-differential privacy In order to guar-
antee ε-DP to each node D(i), all queries must be pro-
tected with the Laplace mechanism Lε′ . The parame-
ter ε′ is determined according to properties (P1) and
(P2) described in section 2. Since queries on differ-
ent classes are computed on disjoint subsets of D(i) (a
sample cannot belong to multiple classes at the same
time), from a privacy perspective they count as a sin-
gle query. On the other hand, queries on different
features of D(i) are counted separately, since they in-
volve the same entries. Therefore each node overall
is asked:

• 1 class counting query, i.e, n(i)y ;

• Fcat category counting queries, i.e., m(i)
f vy, f ∈ Fcat;

• 2Fnum sum queries on numerical features, i.e.,
S(i)f y ,Q

(i)
f y, f ∈ Fnum.

Therefore, in order to guarantee a privacy budget
of ε, the parameter ε′ of the Laplace mechanism to be
applied to each query is given by

ε
′ =

ε

1+Fcat +2Fnum
, (17)

in congruence with the centralized ε-DP Naive Bayes
(Vaidya et al., 2013). However, in our case the mecha-
nism must be applied locally at each node, and there-
fore the overall noise applied to the parameters will
not follow a Laplace distribution, as will be shown in
section 6.3.

Training procedure As mentioned in the discus-
sion above, the training procedure consists of a single
exchange for each node with the central aggregator.
Each node i computes locally the counting and sum
queries on its own partition according to Algorithm 1.
The query results ñ(i), m̃(i), S̃(i), Q̃(i) are sent to the
central aggregator, which collects them across all
nodes and computes the overall parameters of the
model according to Algorithm 2.
The inference of a sample’s class is done according
to the computed parameters as in the original Naive
Bayes (see equation 2).

6 EVALUATION

6.1 Datasets

We test our approach on 6 standard datasets, all taken
from the UCI repository3. The statistics of each
datasets are listed in table 2. For those datasets that

3https://archive.ics.uci.edu/ml/datasets.php

Algorithm 1 Local queries computed by i-th node

Require: Data partition D(i) = (X (i),Y (i)), privacy
budget ε

1: for y = 1, . . . ,C do
2: ε′← ε

1+Fcat +2Fnum

3: ñ(i)y ← Lε′(|{k : y(i)[k] = y}|)
4: for f ∈ Fcat do
5: m̃(i)

f vy← Lε′(|{k : x(i)f [k] = v∧y(i)[k] = y}|)
6: end for
7: for f ∈ Fnum do
8: S̃(i)f y ← Lε′(∑k:y(i)[k]=y x(i)f [k])

9: Q̃(i)
f y ← Lε′(∑k:y(i)[k]=y(x

(i)
f [k])2)

10: end for
11: end for
12: return ñ(i), m̃(i), S̃(i), Q̃(i)

Algorithm 2 Centralized aggregation

Require: ñ(i), m̃(i), S̃(i), Q̃(i) for i = 1, . . . ,N
1: for y = 1, . . . ,C do

2: p̃Y (y)←
∑

N
i=1 ñ(i)y

∑
N
i=1 ∑

Nc
y′=1 ñ(i)y

3: for f ∈ Fcat do

4: p̃X f |Y (v|y)←
∑

N
i=1 m̃(i)

f vy

∑
N
i=1 ñ(i)y

5: end for
6: for f ∈ Fnum do

7: µ̃ f y ←
∑

N
i=1 S̃(i)f y

∑
N
i=1 ñ(i)y

8: σ̃2
f y ←

∑
N
i=1 Q̃(i)

f y

∑
N
i=1 ñ(i)y

− µ̃2
f y,ℓ

9: end for
10: end for
11: return p̃Y , p̃X |Y , µ̃, σ̃2

do not provide a standardadized train/test split, we
perform a 9:1 split with a random seed that is kept
fixed across the entire work.

6.2 Setup

We implement three variants of Naive Bayes:
1. a “vanilla” Naive Bayes based on eqs. (2) to (5)

that has access to the entire centralized dataset
2. a differentially-private centralized Naive Bayes

based on (Vaidya et al., 2013)
3. our differentially-private federated Naive Bayes

based on the algorithm in section 5.

We test each variant on all datasets through
a Monte Carlo analysis, using logarithmically-
spaced values of ε between 10−2 and 101 for the
differentially-private variants. For the federated ap-
proach, we test with number of data partitions N ∈
[1,10,100,1000] whenever possible, skipping the
higher values of N on small datasets, based on the
condition that each partition should include at least 2
data points.

We repeat each experiment 1000 times to account
for the randomness in both the data partitioning across
federated entities and the sampling of Laplace noise.
Unless otherwise stated, we report the mean of those
1000 trials.

All the code and data used in this work are avail-
able on GitHub4.

6.3 Results

Basic behaviour Figure 1 plots the accuracy of the
differentially-private Naive Bayes models as a func-
tion of the privacy budget ε, including both the cen-
tralized approach, and the federated approach with
different choices of N. The score obtained by a
non-differentially-private model is shown as an upper
bound of attainable performance.

On most datasets, the centralized model presents a
typical S-shaped curve, being no better than a random
guess for very small values of ε, but quickly grow-
ing towards the baseline accuracy as the privacy bud-
get increases. The federated model tends to follow
the same curve, but with a “delay” proportional to the
number of partitions. This behaviour is most clear in
the Mushroom and Congressional Voting datasets, al-
though in the former ε = 10−2 is not sufficient to fully
appreciate the left-hand tail. Due to its large sample
count, Skin Segmentation only shows the right-hand
tail of the S-shape, with the federated models dipping
below the maximum performance only for very small
values of ε. SPECT Heart, on the other hand, shows a
long left-hand tail and peaks at an accuracy only just
above that of a random guess, likely due to the small
size of the training set and the non-independence of
its features.

Impact of local sensitivity Two datasets, however,
show a different behaviour. In Adult, the expected
pecking order is present on the right hand side of the
spectrum, but a reversed order can be seen for small
values of ε, where federated Naive Bayes is more
accurate than the centralized variant and further im-
proves as the number of participants N increases. On

4https://github.com/thomasmarchioro3/
FederatedNaiveBayesDP

https://github.com/thomasmarchioro3/FederatedNaiveBayesDP
https://github.com/thomasmarchioro3/FederatedNaiveBayesDP

Table 2: Datasets used in the evaluation

Dataset Samples Labels Fnum Fcat Predefined train/test split
Accelerometer 153,000 3 3 0 no
Adult 48,842 2 6 8 yes (2:1)
Congressional Voting 435 2 0 16 no
Mushroom 8,124 2 0 22 no
Skin Segmentation 245,057 2 3 0 no
SPECT Heart 267 2 0 22 yes (3:7)

0.01 0.1 0.03 0.32 1.0 3.16 10.0
0

0.2

0.4

0.6

0.8

1

ε

A
cc

ur
ac

y

Accelerometer

Centralized
Federated (N = 10)
Federated (N = 100)
Federated (N = 1000)
Non-private

0.01 0.03 0.1 0.32 1.0 3.16 10.0
0

0.2

0.4

0.6

0.8

1

ε

Adult

Centralized
Federated (N = 10)
Federated (N = 100)
Federated (N = 1000)
Non-private

0.01 0.03 0.1 0.32 1.0 3.16 10.0
0

0.2

0.4

0.6

0.8

1

ε

Mushroom

Centralized
Federated (N = 10)
Federated (N = 100)
Federated (N = 1000)
Non-private

0.01 0.03 0.1 0.32 1.0 3.16 10.0
0

0.2

0.4

0.6

0.8

1

ε

A
cc

ur
ac

y

Congressional Voting

Centralized
Federated (N = 10)
Federated (N = 100)
Non-private

0.01 0.03 0.1 0.32 1.0 3.16 10.0
0

0.2

0.4

0.6

0.8

1

ε

Skin Segmentation

Centralized
Federated (N = 10)
Federated (N = 100)
Federated (N = 1000)
Non-private

0.01 0.03 0.1 0.32 1.0 3.16 10.0
0

0.2

0.4

0.6

0.8

1

ε

SPECT Heart

Centralized
Federated (N = 10)
Non-private

Figure 1: Comparison of centralized and federated ε-DP Naive Bayes for different privacy budgets.

Accelerometer, the federated variant is always better
than the centralized one, with N having a negligible
impact.

This is likely caused by a decrease in the sen-
sitivity of the queries in each local partition. With
a centralized approach, the variance of the laplacian
noise is proportional to the sensitivity of the whole
dataset. In addition, a single additive noise contribu-
tion is sampled for each parameter of the model. On
the other hand, in a federated setting, the noise added
by each participant has variance proportional to the
sensitivity of its local partition. This is never bigger
than that of the full dataset and may decrease dramat-
ically as the partition gets smaller. Furthermore, the
final estimate of each model parameter is obtained by
summing the contributions – and thus the noises – of
each partition. The sum of many low-variance noise
contributions is likely closer to zero compared to a
single contribution with high variance.

On Adult and Accelerometer, this drop in local
sensitivity is sufficient to reduce the generally higher
noise level of the federated model below that of the
centralized model, thus leading to better results. For
other datasets, such as Skin, the sensitivity does not
decrease much with more partitions. We can see this
difference in fig. 2, which compares the sensitivity of
the sum query S̃(i) for all numerical features on Adult
and Skin.

On Adult, the ε range of our experiments per-

0.2 0.4 0.6 0.8 1
100

101

102

103

104

Sensitivity

Adult

N = 1
N = 10
N = 100

0.2 0.4 0.6 0.8 1
100

101

102

103

Sensitivity

Skin

N = 1
N = 10
N = 100

Figure 2: Distribution of the sensitivity for the sum query
S̃(i), for different choices of N, on Adult and Skin.

fectly captures the threshold at which this effect be-
comes significant. On Accelerometer, the ε range
only captures the very left-hand side of the behaviour.
This can be deduced by the fact that the centralized
approach is far from the accuracy ceiling and only
barely starting to improve.

Susceptibility to the privacy budget These results
highlight how the threshold at which the differen-
tial privacy mechanism starts severely affecting accu-
racy is highly dependent on the dataset and should be
evaluated domain by domain. They also show how
switching to a federated setting, and thus avoiding the
data collection phase, only requires a small increase
to the privacy budget in order to achieve the same ac-
curacy, with the possibility of even surpassing a cen-
tralized solution in certain limited scenarios.

Noise distribution Figure 3 compares the error dis-
tribution of µ̃, as computed with algorithm 2, on
Adult, for different number of partitions N. While
each noise contribution added to the individual ñ(i)

and S̃(i) parameters follows a Laplace distribution,
their combination by the central aggregator (eq. (13))
approaches a normal distribution as the number of in-
dividual contributions increases.

7 POSSIBLE EXTENSIONS AND
FUTURE WORK

The differentially-private algorithm for federated
Naive Bayes introduced in section 5 is simple at its
core, leaving room for possible extensions and adap-
tations to new use cases. In this section, we describe
some of such extensions that can be added in order
to increase the efficiency and security of the training
procedure. Furthermore, we discuss an open prob-
lem, i.e., Byzantine resilience, which we leave to be
addressed by future work.

Online updates Algorithm 2 takes as input the
query results from all nodes. In reality, we expect the
training procedure to be executed in an asynchronous
fashion, with each participant sending its results at a
different time and the aggregator performing subse-
quent updates to the Naive Bayes parameters. This
also allows new nodes to join the overlay network
and collaborate in training the model. One straight-
forward way to make this possible is to store the re-
sponses of each node, and recompute the model pa-
rameters every time a new set of query responses is

−0.4 −0.2 0 0.2 0.4
0

50

100

150

(µ̃−µ)/µ

N = 1

−0.4 −0.2 0 0.2 0.4
0

50

100

150

(µ̃−µ)/µ

N = 10

−0.4 −0.2 0 0.2 0.4
0

50

100

150

(µ̃−µ)/µ

N = 100

Figure 3: Distribution of the relative error between the noisy estimate of the mean µ̃ and the true value µ, averaged across all
the features and classes. As N increases, the shape looks less like a Laplace distribution and more like a normal one.

sent by a node. However, this is inefficient and re-
quires the central aggregator to store unnecessary in-
formation.

An alternative consists in storing the following ag-
gregated information:

• the total number ν̃y of samples for each class;

• the total counters of categorical features M̃ f vy for
each class;

• the values of mean and variance of all the numer-
ical features µ̃ f y, σ̃

2
f y for each class.

Notice that the parameters p̃Y (y) and p̃X f |Y (v|y) can
be computed from ν̃y and M̃ f vy as

p̃Y (y) =
ν̃y

∑
C
y′=1 ν̃y′

, p̃X |Y (v|y) =
M̃ f vy

ν̃y
, (18)

so the stored variables completely characterize the
model. The complete procedure for updating such
parameters is described in Algorithm 3, and the for-
mulas employed for each of them are derived in the
appendix.

Fully-decentralized Naive Bayes While our main
implementation of differentially-private federated
Naive Bayes achieves its goal of protecting data pri-
vacy, it still presents certain limitations that are related
to the use of a central aggregator. First, since this ag-
gregator is uniquely responsible for merging the con-
tributions of individual entities, it must be trusted to
do so in a fair and correct manner. Second, the aggre-
gator may represents a bottleneck in terms of compu-
tation and/or network communication in the process.

One promising alternative is the use of Gossip
Learning techniques (Ormándi et al., 2013), where the
central aggregator is replaced by peer-to-peer model
exchanges. Therein, participants update their local
state based on the information received from a peer,
and later broadcast their own information to another

Algorithm 3 Online update

Require: current parameters ν̃(t),M̃(t), µ̃(t), [σ̃2](t),
update ñ(i), m̃(i), S̃(i), Q̃(i) from D(i)

1: for y = 1, . . . ,C do
2: ν̃

(t+1)
y ← ν̃

(t)
y + ñ(i)y

3: for f ∈ Fcat do
4: M̃(t+1)

f vy ← M̃(t)
f vy + m̃(i)

f vy
5: end for
6: for f ∈ Fnum do

7: µ̃(t+1)
f y ← ν̃

(t)
y

ν̃
(t+1)
y

µ̃(t)f y +
S̃(i)f y

ν̃
(t+1)
y

8: ς̃
(t+1)
f y ← ν̃

(t)
y

ν̃
(t+1)
y

([σ̃2
f y]

(t)+[µ̃(t)f y]
2)+

Q̃(i)
f y

ν̃
(t+1)
y

9: [σ̃2
f y]

(t+1)← ς̃
(t+1)
f y − [µ̃(t+1)

f y]2

10: end for
11: end for
12: return ν̃(t+1),M̃(t+1), µ̃(t+1), [σ̃2](t+1)

random participant. These peer-to-peer communica-
tions eventually lead to the convergence of the lo-
cal state of all participants. While these techniques
have not been studied to the same extent as Feder-
ated Learning, recent work has shown that they can
compete with it in terms of performance (Hegedűs
et al., 2021) and that they can be quite robust to dif-
ferent data distributions and network conditions (Gia-
retta and Girdzijauskas, 2019).

To apply Gossip Learning in the context of Naive
Bayes, each entity still computes the statistics of its
partition according to algorithm 1. Then, the gossip-
based aggregation scheme detailed in (Jelasity et al.,
2005) is used which, upon reaching convergence, pro-
vides every entity with the sums of each statistic
across all partitions. Each entity is then able to per-
form algorithm 2 locally and independently, thus ob-
taining the full Naive Bayes model without any need
for central orchestration.

Byzantine resilience One important research topic
in the area of Federated Learning is byzantine re-
silience, i.e., the ability to converge to a high-quality
model even when some of the entities involved are
malicious and may take arbitrary actions to prevent
this outcome. We refer the reader to (Lyu et al., 2020)
and (Awan et al., 2021) for a thorough introduction to
the topic.

This issue is most significant in a massively-
distributed, crowd-sourced setting, where participa-
tion in the protocol is open to any entity and the total
number of participants can reach millions. However,
it can also affect smaller, closed settings: it might not
be possible to establish trust relationships between the
entities in the system, or there may be a concern that
some otherwise honest entities may at some point be
compromised by an external malicious actor.

One well-studied approach to achieve byzantine
resilience consists of median-based aggregation rules,
such as Krum (Blanchard et al., 2017) and Bulyan
(Guerraoui et al., 2018). However, there are chal-
lenges that need to be addressed when applying these
techniques to Naive Bayes. First, the query re-
sults ñ(i), m̃(i), S̃(i), Q̃(i) are not suitable for median-
based aggregation, as their magnitude depends on
the amount of the data (overall and per class) within
each partition. Instead, local Naive Bayes parame-
ters p̃(i)Y (y), p̃(i)X f |Y (v|y), µ̃

(i),
[
σ̃2
](i) need to be input to

the median-based aggregation rule. This works well
when the partitions are large and the data IID dis-
tributed among them. However, it may not be suitable
when certain classes or feature values are underrepre-
sented in certain partitions, causing the local parame-
ters to be very inaccurate if not undefined. Thus, one
key strength of the sum- and count-based aggregation
approach is lost.

Additionally, these byzantine resilience ap-
proaches, like most others, are designed for iterative
training processes, in which new updates from each
entity are computed and aggregated at each time step,
thus slowly tuning the model parameters over time. In
a single-step process, as is the training of Naive Bayes
models, such approaches may fail to capture sufficient
information.

8 CONCLUSION

We introduced the first implementation of a federated
Naive Bayes classifier under differential privacy. The
relative performance of our approach to its centralized
counterpart varies depending on the characteristics of
the dataset. According to our Monte Carlo analysis,
in most cases, a small privacy penalty must be paid

to achieve the same accuracy level. However, when
the local sensitivity in each federated data partition is
much lower than the sensitivity of the whole dataset,
we show that the federated Laplace mechanism better
estimates the true parameters of the model.

Moreover, we demostrated that our algorithm can
be easily extended to incorporate additional features
such as online updates and full decentralization, while
more research is needed to achieve byzantine re-
silience.

ACKNOWLEDGEMENTS

This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant
agreement No 813162: RAIS – Real-time Analytics
for the Internet of Sports. The content of this paper
reflects the views only of their author (s). The Eu-
ropean Commission/ Research Executive Agency are
not responsible for any use that may be made of the
information it contains.

REFERENCES

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,
Mironov, I., Talwar, K., and Zhang, L. (2016). Deep
learning with differential privacy. In Proceedings of
the 2016 ACM SIGSAC conference on computer and
communications security, pages 308–318.

Awan, S., Luo, B., and Li, F. (2021). Contra: Defending
against poisoning attacks in federated learning. In Eu-
ropean Symposium on Research in Computer Security,
pages 455–475. Springer.

Bernal, D. G., Giaretta, L., Girdzijauskas, S., and Sahlgren,
M. (2021). Federated word2vec: Leveraging feder-
ated learning to encourage collaborative representa-
tion learning. arXiv preprint arXiv:2105.00831.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and
Stainer, J. (2017). Machine learning with adversaries:
Byzantine tolerant gradient descent. Advances in Neu-
ral Information Processing Systems, 30.

Dwork, C. (2008). Differential privacy: A survey of results.
In International conference on theory and applica-
tions of models of computation, pages 1–19. Springer.

Geyer, R. C., Klein, T., and Nabi, M. (2017). Differentially
private federated learning: A client level perspective.
arXiv preprint arXiv:1712.07557.

Giaretta, L. and Girdzijauskas, Š. (2019). Gossip learning:
Off the beaten path. In 2019 IEEE International Con-
ference on Big Data (Big Data), pages 1117–1124.
IEEE.

Guerraoui, R., Rouault, S., et al. (2018). The hidden vul-
nerability of distributed learning in byzantium. In In-

ternational Conference on Machine Learning, pages
3521–3530. PMLR.

Hegedűs, I., Danner, G., and Jelasity, M. (2021). Decentral-
ized learning works: An empirical comparison of gos-
sip learning and federated learning. Journal of Paral-
lel and Distributed Computing, 148:109–124.

Islam, T. U., Ghasemi, R., and Mohammed, N. (2022).
Privacy-preserving federated learning model for
healthcare data. In 2022 IEEE 12th Annual Com-
puting and Communication Workshop and Conference
(CCWC), pages 0281–0287. IEEE.

Jelasity, M., Montresor, A., and Babaoglu, O. (2005).
Gossip-based aggregation in large dynamic networks.
ACM Trans. Comput. Syst., 23(3):219–252.

Ji, Z., Lipton, Z. C., and Elkan, C. (2014). Differential pri-
vacy and machine learning: a survey and review. arXiv
preprint arXiv:1412.7584.

Kantarcıoglu, M., Vaidya, J., and Clifton, C. (2003). Pri-
vacy preserving naive bayes classifier for horizontally
partitioned data. In IEEE ICDM workshop on privacy
preserving data mining, pages 3–9.

Li, T., Li, J., Liu, Z., Li, P., and Jia, C. (2018). Differen-
tially private naive bayes learning over multiple data
sources. Information Sciences, 444:89–104.

Lopuhaä-Zwakenberg, M., Alishahi, M., Kivits, J., Klaren-
beek, J., van der Velde, G.-J., and Zannone, N. (2021).
Comparing classifiers’ performance under differential
privacy. In International Conference on Security and
Cryptography (SECRYPT).

Lyu, L., Yu, H., Ma, X., Sun, L., Zhao, J., Yang, Q., and
Yu, P. S. (2020). Privacy and robustness in feder-
ated learning: Attacks and defenses. arXiv preprint
arXiv:2012.06337.

Marchioro., T., Kazlouski., A., and Markatos., E. (2021).
User identification from time series of fitness data. In
Proceedings of the 18th International Conference on
Security and Cryptography - SECRYPT,, pages 806–
811. INSTICC, SciTePress.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
Arcas, B. A. y. (2017). Communication-Efficient
Learning of Deep Networks from Decentralized Data.
In Singh, A. and Zhu, J., editors, Proceedings of
the 20th International Conference on Artificial Intelli-
gence and Statistics, volume 54 of Proceedings of Ma-
chine Learning Research, pages 1273–1282. PMLR.

McSherry, F. D. (2009). Privacy integrated queries: an ex-
tensible platform for privacy-preserving data analysis.
In Proceedings of the 2009 ACM SIGMOD Interna-
tional Conference on Management of data, pages 19–
30.

Ormándi, R., Hegedűs, I., and Jelasity, M. (2013). Gossip
learning with linear models on fully distributed data.
Concurrency and Computation: Practice and Experi-
ence, 25(4):556–571.

Rish, I. et al. (2001). An empirical study of the naive bayes
classifier. In IJCAI 2001 workshop on empirical meth-
ods in artificial intelligence, volume 3, pages 41–46.

Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz,
M., and Backes, M. (2018). Ml-leaks: Model and
data independent membership inference attacks and

defenses on machine learning models. arXiv preprint
arXiv:1806.01246.

Shafagh, H., Burkhalter, L., Hithnawi, A., and Duquennoy,
S. (2017). Towards blockchain-based auditable stor-
age and sharing of iot data. In Proceedings of the 2017
on cloud computing security workshop, pages 45–50.

Ullah, F., Edwards, M., Ramdhany, R., Chitchyan, R.,
Babar, M. A., and Rashid, A. (2018). Data exfiltra-
tion: A review of external attack vectors and counter-
measures. Journal of Network and Computer Appli-
cations, 101:18–54.

Vaidya, J. and Clifton, C. (2004). Privacy preserving naive
bayes classifier for vertically partitioned data. In Pro-
ceedings of the 2004 SIAM international conference
on data mining, pages 522–526. SIAM.

Vaidya, J., Shafiq, B., Basu, A., and Hong, Y. (2013). Dif-
ferentially private naive bayes classification. In 2013
IEEE/WIC/ACM International Joint Conferences on
Web Intelligence (WI) and Intelligent Agent Technolo-
gies (IAT), volume 1, pages 571–576. IEEE.

Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F.,
Jin, S., Quek, T. Q. S., and Poor, H. V. (2020). Fed-
erated learning with differential privacy: Algorithms
and performance analysis. IEEE Transactions on In-
formation Forensics and Security, 15:3454–3469.

Yi, X. and Zhang, Y. (2009). Privacy-preserving naive bayes
classification on distributed data via semi-trusted mix-
ers. Information systems, 34(3):371–380.

Zhang, H. (2004). The optimality of naive bayes. Aa,
1(2):3.

Zhu, L., Liu, Z., and Han, S. (2019). Deep leakage from
gradients. Advances in Neural Information Processing
Systems, 32.

APPENDIX

Deriving the formulas for online updates

In order to derive the the online updates of our model,
we consider a time-varying model where all the pa-
rameters ν(t),M(t),µ(t),σ(t) are defined at the t-th ex-
change between the central aggregator and one node
of the network. According to this definition, denot-
ing with τi the time at which iteration with node D(i)

happens, the parameters of the model at time t should
satisfy

ν
(t)
y = ∑

i:τi<t
n(i)y , M(t)

f vy = ∑
i:τi<t

m(i)
f vy, (19)

µ(t)f y =
∑i:τi<t S(i)f y

∑i:τi<t n(i)y

, [σ2
f y]

(t) =
∑i:τi<t Q(i)

f y

∑i:τi<t n(i)y

−µ(t)f y .

(20)

Counting parameters such as ν(t) and M(t) are simply
updated by adding the new counts n(i),m(i) of the i-th

node which is sending updates at time t +1

ν
(t+1)
y = ν

(t)
y +n(i)y , M(t+1)

f vy = M(t)
f vy +m(t)

f vy. (21)

The mean µ(t)f y , instead, can be updated by observing
that

µ(t+1)
f y =

∑i′:τi′<t+1 S(i
′)

f y

∑i′:τi′<t+1 n(i
′)

y

(22)

=
∑i′:τi′<t n(i

′)
y

∑i′:τi′<t+1 n(i
′)

y

∑i′:τi′<t S(i
′)

f y

∑i′:τi′<t n(i
′)

y

+
S(i)f y

∑i′:τi′<t+1 n(i
′)

y

(23)

=
ν
(t)
y

ν
(t+1)
y

µ(t)f y +
S(i)f y

ν
(t+1)
y

, (24)

where S(i) is the sample sum submitted by node D(i)

at time t. Analogously, the estimated second moment
at time t +1 is obtained as

ς
(t+1)
f y =

ν
(t)
y

ν
(t+1)
y

ς
(t)
f y +

Q(i)
f y

ν
(t+1)
y

. (25)

The variance can be obtained by replacing ς
(t)
f y =

[σ2
f y]

(t)+[µ(t)f y]
2, which leads to

[σ2
f y]

(t+1)=
ν
(t)
y

ν
(t+1)
y

([σ2
f y]

(t)+[µ(t)f y]
2)+

Q(i)
f y

ν
(t+1)
y

−[µ(t+1)
f y]2.

(26)

