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Abstract—It is indisputable that physical activity (PA) is vital
for an individual’s health and well-being. However, globally, one
in four adults do not meet the recommended levels of PA, with
substantial personal and socioeconomic implications. In recent
years, a significant amount of work has explored the potential of
pervasive computing and self-tracking for increasing PA. Adaptive
and personalized goal-setting has proven to be one of the most
efficient methods in this direction. To this end, we propose a
Machine Learning (ML) approach, WeMoD, which can be used to
predict a user’s future daily step count for setting challenging yet
achievable goals. To develop WeMoD, we utilize heterogeneous,
multimodal human data collected unobtrusively in the wild.
Additionally, we use a novel fusion of physiological, behavioral,
and contextual features, which according to the experimental
results, has a positive effect on the predictive ability of the models.
Specifically, we can predict a user’s step count with a MAE
of 1930 steps and further improve this performance through
personalization with a MAE of 1908 steps, paving the way for
future work in this field.

Index Terms—physical activity prediction, goal-setting, self-
tracking, machine learning.

I. INTRODUCTION

Physical Activity (PA) is any movement that sets our bodies
into motion. PA has substantial benefits for human health
and well-being, including a lower risk of all-cause mortality,
coronary heart disease, type 2 diabetes, certain types of cancer,
depression, and Alzheimer’s disease. It also has several socioe-
conomic benefits, such as reduced usage of fossil fuels, safer
roads, less air pollution, and generally higher quality of life [1].
Despite these considerable benefits, one in four adults and three
in four adolescents do not meet the recommended guidelines for
PA [2]. According to the World Health Organization, globally,
physical inactivity’s cost is estimated at $54 billion in direct
health care (57% of which is covered by the public sector),
and an additional $14 billion from productivity loss [1].

A significant challenge towards fighting this inactivity pan-
demic is encouraging individuals who are not sufficiently
active to include PA to a greater extent in their daily routine.
Simplifying the guidelines into something such as step count
recommendations is easy to understand and achieve and hence
is of utter importance for promoting public health [3]. To
this end, self-tracking devices have been proven successful in
increasing individual PA levels by providing a personalized self-
monitoring and coaching experience [4, 5]. The most common
way in which wearable devices are used to increase PA is by
tracking the user’s daily step count and setting a daily step goal

to achieve [6]. The most crucial aspect of setting successful step
count goals is the algorithm used to calculate such goals. The
simplest and most common algorithms follow a ”Fixed Goal
Approach” in which the device sets a predefined fixed goal each
day for the user, such as the recommended 10.000 steps or a
goal that the user has selected for themselves. However, the
”Adaptive, Personalized Goal Approach”, in which the system
personalizes and adapts the user’s goal by taking into account
various aspects of their behavior and context, has proven to be
more effective in increasing adherence and PA levels [4, 5].

Nevertheless, the field of PA prediction for adaptive goal-
setting is still in its infancy. SotA approaches suffer from
various limitations, such as subjective, lab-based experimental
data, inability to tackle heterogeneous, real-world data sources,
limited feature space, and lack of transparently evaluated, end-
to-end, ML-based solutions.

Motivated by the issues above, this work proposes the We-
MoD approach for PA prediction, consisting of a series of ML
models trained on real-life, heterogeneous, multimodal users’
data collected in the wild. Specifically, our contributions are as
follows:

• C1 - In-the-wild Data Collection: To capture individuals’
actual daily routines outside of an ongoing experiment,
we utilize past data, raging from a few days to more than
five years, donated from existing wearable users to build
a naturalistic, multi-device dataset that enables us to build
more robust models for the real world.

• C2 - Wearable Data Integration & Preprocessing: To
take advantage of data originating from different devices,
we design and implement a data integration and pre-
processing component that merges and analyzes multi-
manufacturer, multi-device data. This way, we enable
researchers and experts in this field to expand their sam-
ple population and diversify their available activity data
sources.

• C3 - Extended Feature Space: We fuse physiological,
psychological, and contextual features, including COVID-
19-related data, to forecast a user’s upcoming daily step
count. We incrementally utilize and evaluate various fea-
ture sets for evaluating their effect on the model’s predic-
tive ability.

• C4 - Open-source, ML-based Approach for PA Pre-



diction: We develop WeMoD1, an open-source, end-to-
end approach for the collection, integration, preprocessing,
and ML-based forecasting of PA from a set of rich
features. In this process, we experiment with various ML
algorithms and paradigms. Among others, we compare the
performance of traditional generalized ML models with
personalized models, directly linked to individuals, as a
herald of individualized goal-setting interventions.

We organize the remaining of this paper as follows: Section
II discusses prior work in ML-based PA prediction and goal-
setting. Section III outlines our data collection, preprocess-
ing, analysis, and evaluation methodology, while Section IV
presents our experimental results and highlights our findings.
Finally, Section V concludes this paper and introduces future
work directions.

II. RELATED WORK

In the following, we briefly overview two core research topics
that our work touches upon, namely goal-setting interventions
and ML-based PA prediction.

A. PA Prediction & Goal-setting Interventions

Several works have studied the impact of appropriate goal-
setting on increasing an individual’s PA levels, measured in
daily step count data. Zhou et al. [7] conducted a Randomized
Control Trial (RCT), where the intervention group received
personalized goals adapted to their previous activity data,
whereas the active control group received a fixed goal of 10000
steps. Their results led to a statistically significant difference
favoring the intervention group. Similarly, van Dantzig et al.
[8] evaluated the impact of a context-aware, personalized goal-
setting approach through an RCT, and Phatak et al. [9] pre-
sented an idiographic (person-specific) approach establishing
the efficiency of dynamic models of PA in the context of goal-
setting and positive reinforcement interventions. These findings
indicate that personalized goal-setting, which considers the
user’s context, is more effective towards increasing PA levels, as
expressed through the daily step counts. However, these studies
focus on RCTs rather than the prediction models themselves
and provide limited information in this regard, as opposed to
our work. Additionally, in contrast to these works, we have
created and utilized a real-world, heterogeneous dataset that
is not limited to a specific experiment duration or lab setting
and represents the participants’ natural behavior. Overall, we
adopt a broader view of human sensing by incorporating a
combination of features, including physiological, psychological,
and contextual data, rather than sole past measurements, and by
utilizing ML for behavioral analysis from human sensing data.

B. ML-based PA Prediction & Goal-setting Approaches

Most closely to our work, prior literature has also focused
on building ML models for PA prediction and adaptive goal-
setting. Zhou et al. [7] developed an ML model utilizing users’
historical data regarding daily step count and goal achievement

1https://github.com/BasdekD/adaptive-goal-setting

rate and generated challenging yet realistic goals to maximize
future PA. Dijkhuis et al. [10] developed an ML model that
predicts a user’s achievement of a daily step count goal which
uses activity and time-related features up to the prediction
moment. A similar approach is presented by Li et al. [4], where
the authors used ML to develop a model that calculates hour by
hour the probability of a user achieving their daily step goal.
The model considers past activity patterns and the current PA
target to deliver the desired prediction. A limitation of the above
works is that they do not report the performance of the step
count prediction models, rendering it impossible to evaluate
their effectiveness. Also, they do not consider contextual and
psychological features that may enhance the accuracy of the
suggested goals, an approach that we explore in this work.
To cover this gap, Mohammadi et al. [11] developed a neural
network model that considered several contextual features de-
rived from questionnaires (personal, social, and environmental
features), as well as physiological data to predict the average
weekly step count of an individual. However, this approach
does not consider the different characteristics of the days in a
week (weekends vs. weekdays, holidays, day-specific activity
patterns). In contrast, our work explores in-depth the importance
of such feature sets (e.g., time-related, COVID-19-related) for
the performance of ML models and calculates more demanding
daily (instead of weekly) PA predictions.

III. METHODOLOGY

This section presents our methodology regarding data collec-
tion and preprocessing, feature engineering, and model building
and evaluation, an overview of which we present in Figure 1.
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Fig. 1. The WeMoD approach outline: In the dataset curation phase, we perform
necessary data preprocessing steps, and feature and window size selection. In
the algorithm selection and optimization phase, we experiment with different
ML algorithms, and we proceed with dimensionality reduction.

A. Data Collection

A critical aspect for accurately predicting the daily step
count of a person is finding the appropriate dataset for training
and evaluating the ML model. As mentioned in Section I,
there are two major open issues regarding such datasets. First,
previous studies mainly focused on physiological measure-
ments, overlooking other factors that may affect PA, such as
behavioral traits or environmental factors. Second, there is a



lack of relevant in-the-wild data, which may lead to a distorted
reflection of an individual’s actual PA levels [7]. To this end,
we unobtrusively constructed an in-the-wild dataset consist-
ing of data from users with heterogeneous activity trackers.
Furthermore, we collected multimodal data concerning historic
PA levels combined with the user’s psychology and person-
ality, time-relevant features, and features related to COVID-19
movement-restrictive government policies, as described in detail
in Section III-B.

To collect the necessary data for our final dataset, we asked
twenty-one participants (10 females, 11 males), all over 18
years old (18-24 years: 5, 25-34 years: 8, 35-44: 7, 45-54:
1), owners of Xiaomi and Apple activity trackers and mobile
phones, to provide us with their data without any mone-
tary compensation. The average number of participants’ steps
ranged from 793 to 9244 (µ = 4527 and σ = 2062). The study
followed the guidelines of the EU General Data Protection
Regulation (GDPR) (2016/679) [12]. We pseudonymized the
collected data, using a one-way cryptographic hash function
[13] (SHA256) to make it impossible to match a piece of
information to the specific participant that has submitted it.
Finally, all participants provided informed consent, and ethical
approval was obtained from the Aristotle University of Thes-
saloniki (AUTH) Ethics Committee (254324/2020).

B. Feature Engineering

The WeMoD feature-rich dataset incorporates data collected
from three different data sources: (1) Activity trackers, (2)
Questionnaires, and a (3) COVID-19 dataset, totaling 53 fea-
tures. Specifically:
Personality and identity features: We extracted 33 personality
and identity features from four questionnaires: demographics,
the Big Five personality trait scale [14], and the Processes and
Stages of Change scales [15, 16]. With regards to demographics,
we built seven features concerning gender, age, family status,
educational level, and career status. From the Big-Five ques-
tionnaire, we evaluated each participant’s personality in terms of
openness to experience, conscientiousness, extraversion, agree-
ableness, and neuroticism and built five related features. Lastly,
from the TTM questionnaires, we assessed the user’s cognitive
and affective experiential (e.g., consciousness-raising, dramatic
relief, environmental reevaluation, self-evaluation, social liber-
ation) and behavioral processes (e.g., self-liberation, counter
conditioning, helping relationships, reinforcement management,
stimulus control), and built 21 related features.
Activity and Date features: We obtained the daily number of
steps as the target variable, as well as past physical activity
features. It is worth mentioning that days with less than 500
steps were considered as no-wear days and discarded from our
dataset similarly to other works [9, 17]. Regarding the date
features, we extracted helpful meta-information for predicting
steps, such as holiday, weekend, day of the week, month, and
day of the month.
COVID-19 features: In response to the COVID-19 outbreak,
governments worldwide applied a wide range of measures that
may have impacted PA (e.g., curfews, movement restrictions).

To this end, and since the period of recorded data coincides
with the global pandemic, we utilized a public dataset [18],
containing indicators from different policy responses (e.g.,
economic, health, containment, and closure, miscellaneous). We
focused on Greece’s records per our sample and included 15
features regarding containment and closure policies.

After completing the feature extraction process, each day
of a participant in our final dataset consists of 53 features
(excluding physical activity window-based features), converted
in a numerical format with appropriate encoding techniques.

C. Data Preprocessing

Following the data collection and feature engineering pro-
cesses described above, a few necessary preprocessing steps
have been taken to ensure the robustness of the dataset we
created. First, we transformed the data through the manufacturer
integration component, merging data from heterogeneous data
sources. Then, we applied several techniques for data cleaning
(outlier detection, handling of missing days, and no-wear days),
and we evaluated the importance of the different feature groups
through an extended experimentation process with different
subsets of features. To obtain the final format of the dataset,
we had to decide on the window size to be used as input
for WeMoD to predict the step count of the next day. Four
different window sizes were tested, and the performances of the
corresponding prediction models were compared. The different
n values used were 5, 7, 14, and 20 days. These values cover an
adequate number of experimental window sizes for this research
field while also maintaining the feasibility of efficient training
of ML models.

After the initial data preprocessing phase, each day of
recorded activity in the dataset is described by 53 different fea-
tures plus additional window-based physical activity features.
It becomes evident that the task at hand is characterized by
high dimensionality, which may lead to increased training time
and even reduced accuracy of the obtained predictions [19].
Hence, for the dimensions of the dataset to be reduced, two
distinct approaches were evaluated, namely feature selection
and dimensionality reduction through dataset projection into a
lower dimension. Our approach towards feature selection was to
apply recursive feature elimination (RFE), specifically RFECV,
due to the automated and interpretable manner by which the
most important features are identified. Regarding dimensional-
ity reduction, we utilized Principal Component Analysis (PCA).
RFE reduces the dimensions of the input data by eliminating
the least essential features from the dataset. On the other hand,
PCA accomplishes the task by applying transformations from
the field of linear algebra to the data, making the resulting
dataset a projection of the original one.

Overall, our data preprocessing methodology had a positive
impact on the performance of the ML prediction models,
indicating the high quality of the final dataset, as presented
in Section IV.



D. Model Building & Evaluation

Following the creation of the final version of the dataset,
the next step towards developing WeMoD is selecting the ML
algorithm that will be used for the prediction model.
Generalized ML Models. Since the target variable is a contin-
uous integer value, we formulate the task at hand as a regression
problem. Hence, the algorithms used in our work are super-
vised ML regression algorithms, specifically Ridge Regression
(RI), Decision Tree (DT), Random Forest (RF), and Gradient
Boosting Regressor (GBR). These algorithms are chosen to
evaluate the performance of different approaches representing
linear, tree-based, ensemble, and boosting methodologies used
in ML for PA prediction. To obtain the experimental results
and compare the different algorithms, we have first conducted
hyperparameter tuning and determined their optimal configura-
tion through the usage of GridSearchCV.
Personalized ML Models. On top of the traditional, general-
ized models, we also adopt a personalized ML paradigm. Per-
sonalized ML refers to the creation of ML models that exploit
a single individual’s data instead of assuming that “one-size-
fits-all”, building upon previous promising work in the domain
of personalized health and well-being analytics [20, 21]. In our
work, we conduct a proof-of-concept experiment to evaluate
WeMoD’s performance on an unknown, new user and lay the
foundation for further research on this topic. Specifically, we
utilize two versions of the dataset with identical features. The
first one, the personalized dataset, is based on data from a single
participant. Ten percent of this user’s data are held out as a
test set for evaluation purposes. The second dataset, used for
the generalized model, contains data from all the participants,
excluding the user above.

In the process of evaluating the performance of the different
models and paradigms, the dataset to be used each time is
separated into a train/validation (90%) and a test set (10%).
Firstly, the performance of each model is evaluated through a
time-series-oriented CV process on the training data. Next, each
model is assessed on the test set to evaluate its performance
on completely unknown data and ensure the robustness of the
evaluation results by excluding the possibility of overfitting.
The corresponding results of the algorithm selection and the
generalized versus personalized experiments are presented in
Section IV.

IV. RESULTS & DISCUSSION

This section presents our experimentation results and a
commentary on our findings regarding data preprocessing tech-
niques’ effectiveness in the field of PA prediction and the dif-
ferences in performance between generalized and personalized
ML.

A. Effects of Data Preprocessing on PA Prediction

As discussed in III-C, several different approaches regarding
feature-group selection, outlier handling, and window size
selection were tested in order to obtain the optimal version
of the dataset. This section presents our results regarding the
experimentation with various data preprocessing techniques for

PA prediction from multimodal, heterogeneous data.
Window Size: The window size used in creating the dataset
did not have much impact on the PA prediction models’
performance. Thus, we used five days (n = 5) of activity as
input, leading to the least complex models and the largest pool
of available data for training, totaling approximately 10000 days
of user data.
Feature Selection: Concerning feature selection, we organized
the various features into four categories, Activity (A), Date
(D), Personality (P), COVID-19 (C19), and tested the chosen
regression algorithms’ performance in datasets containing dif-
ferent subsets of features. The results (see Table I) indicated that
all feature groups had a positive contribution to the predictive
ability of the ML models reaching a MAE of 2138 steps.
Thus, although the exclusion of certain features through feature
selection positively impacted the model’s efficiency, no feature
group as a whole should be excluded from the dataset. In other
words, the novel feature fusion used in the WeMoD dataset
leads to the best performance of the prediction models.
Additionally, we notice that GBR has consistently yielded
the best results (the lower the MAE, the better) in the task
of PA prediction and hence we utilize it for the remaining
experiments.

TABLE I
MAE FOR DATASETS WITH DIFFERENT FEATURE-GROUPS (TRAIN SET)

Algorithm A & D A, D & P A, D, P & C19
RI 2363 2281 2274
DT 2412 2301 2290
RF 2277 2185 2149
GBR 2277 2174 2138

Outlier Handling: Outlier handling is vital especially when
in-the-wild data are considered. In our approach, days with
exceptionally high step counts are removed from the dataset.
The number of days to be removed is defined as a threshold
value indicating the percentage of the total number of record-
ings in the dataset that should be considered outliers. After
experimentation, we concluded that the optimal threshold for
which the model’s performance is improved while overfitting
is avoided is 2% with a MAE of 1940 steps in the training
set. Table II presents the MAE achieved for different threshold
values, and proves that outlier detection and removal can
significantly improve the PA prediction models in terms of
MAE.

TABLE II
PERFORMANCE FOR DIFFERENT OUTLIER THRESHOLD VALUES

Threshold Train MAE Test MAE
1% 2021 2246
2% 1940 2224
5% 1788 2276
10% 1617 2301

Dimensionality Reduction: For window size of n = 5, the
total number of features is 317, and the RFE reduced these
features to 247. We evaluated our GBR model on the reduced
version of a training and a test set containing 247 features and
achieved a MAE of 1930 steps in the training set and 1951



steps in the test set. In Figure 2, we present the MAE as
obtained through CV for different numbers of features chosen
by RFE, where we can see that even less than 100 features
can yield satisfactory performance. PCA yielded slightly worse
performance with a MAE of 1975 and an optimal number
of 57 components. Recalling the previous best performance
of the prediction model (Table II), we conclude that feature
elimination significantly reduces model complexity without
compromising on PA prediction performance.

Fig. 2. CV MAE for various numbers of features chosen by RFE

B. Generalized vs. Personalized ML in PA Prediction

Through this experiment, we assess the performance of
the generalized WeMoD model on a new unknown user and
compare this performance to a personalized ML approach.
The two models were trained on their respective datasets, as
described in III-D and evaluated for their predictions on an
unknown test set of 160 days of user data. The personalized
model yields a better MAE of 1908 steps, compared to 2282
of the generalized model. Having said that, the generalized
WeMoD can still identify patterns in the user’s step count, even
though it has no previous knowledge of any information related
to this specific participant of the research. Most likely, with a
greater number of users whose data will be utilized for the
generalized model’s training, the efficiency of its predictions,
even for completely unknown individuals, would be further
improved. Figure 3 presents a plot with the predictions of the
two models amongst the actual step count values for 20 days
of the unknown test set, which verifies our claims.

V. CONCLUSIONS & FUTURE WORK

This work has demonstrated the feasibility of an end-to-
end approach for step count prediction. The purpose of our
research has been two-fold. Firstly, working with an in-the-wild,
heterogeneous dataset that included a combination of activity-
related, personal, and contextual features. Secondly, developing
a model that utilizes the above dataset to forecast a user’s future
daily step count. WeMoD serves as a proof of concept for the
feasibility of PA prediction in adaptive goal setting. Suggesting
an appropriate intervention strategy is out of the scope of this
research. Despite that, such a model could be incorporated
in the core of more complex goal-setting approaches and PA
intervention to positively alter a user’s behavior regarding

Fig. 3. WeMoD and Personalized predictions VS actual steps of 20 days.

PA. Specifically, to fulfill C1, we utilized in-the-wild data
originating from user activity unrelated to their participation
in the ongoing research, which ensured an accurate reflection
of an individual’s PA levels. By implementing C2, we designed
and applied a data integration and preprocessing component to
pool and analyze activity data originating from various ubiq-
uitous devices. For C3, we considered a novel combination of
physiological, psychological, and contextual features, proving
that they can positively contribute to PA prediction. Finally, for
C4, we developed and open-sourced a series of ML prediction
models capable of efficiently forecasting a user’s future step
count, given a set of features for a sequence of previous days.
Our best model achieved a MAE of 1908 steps.

Based on the above, we believe that the objectives of this
research have been achieved; without this, of course, meaning
that there is no room for further improvement through future
work. An important issue that we would like to address in the
future is the relatively small sample size. A larger population
sample would provide more days of recorded activity to train
more robust and generalizable ML models. Another future
direction is incorporating more feature categories (e.g., user
location, weather conditions, or other behavioral traits) in the
PA prediction task and assessing their impact on the predictive
ability of the respective ML models. In reality, the available fea-
ture space that may be directly or indirectly related to a user’s
daily step count is vast. Thus, any future research that attempts
to identify the impact of different features on PA prediction
models’ performance can be considered a contribution to this
field. Additionally, while a throughout experimentation on the
topic of personalized vs. generalized approaches is out of the
scope of this research, our results provide exciting insight and
indicate that there is more than enough space for further work
regarding the pros and cons of each approach in the health
and well-being domain. Finally, we propose incorporating our
model in an intervention application to increase an individual’s
PA levels. The WeMoD prediction model was designed having
this goal in mind and with the hope of contributing to the cause



of promoting a healthier lifestyle for people. We hope that by
open-sourcing our code, other researchers will be encouraged
to experiment with the WeMoD approach and adapt it to their
needs for a wide variety of problems within the mHealth
domain.
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