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Abstract

Botnets have become a major threat in the Internet of Things (IoT) landscape, due to the damages
that these sets of compromised IoT devices may cause. To increase their attacks’ success, modern
botnets are designed in a distributed manner, following a P2P structure. Recently, several botnet
detection solutions have been proposed. Among them, community behavior analysis solutions seem
to be promising because of their high detection accuracy. However, such solutions are not optimized
for real life scenarios since they only run in a static mode, that is, reading all network traffic at once.
As such, they do not support real-time data analysis. In order to handle such issue, these solutions
should run in a dynamic distributed environment where different actors participate in the detection
process. However, this collaborative environment brings up the issue of trust among the actors.

To address this issue, in this paper, we present PAutoBotCatcher, a dynamic botnet detection
framework based on community behavior analysis among peers managed by different actors. PAuto-
BotCatcher leverages on blockchain to ensure immutability and transparency among all actors. To
optimize continuous detection while keeping good accuracy, we design a set of optimization tech-
niques, such as caching detection’s output and pre-processing the shared network traffic. In addition,
we leverage on different privacy-preserving techniques to protect devices from re-identification dur-
ing the botnet detection process. We have extensively tested our solution to show its effectiveness and

to demonstrate that blockchain is a good solution for dynamic botnet detection.

1. Introduction

IoT devices are having a drastic growth since the last 10
years because of their usefulness in many industrial appli-
cations. They have increased from 13.4 billion in 2015 to
38.5 billion in 2020 with a percentage of 285%.! Due to
this growth, IoT devices have become an attractive target
for attackers to perform various attacks, such as DDoS (Dis-
tributed Denial of Service). For example, Dyn, a major DNS
Provider, faced one of the largest known DDoS attacks per-
formed using compromised IoT devices and able to reach a
bandwidth of 1.2 Tbps [1].

IoT devices are considered the weakest link in compa-
nies’ security chain since they are not usually well tested and
secured against cyber attacks due to, for example, the adop-
tion of weak passwords and unencrypted network services.’
In addition, they have low computation power to run sophis-
ticated security solutions. As a result, attackers can easily
inject malicious software (malware) in IoT devices to take
control over them or steal private information [33].
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Among the various kinds of attacks threatening IoT de-
vices, botnets are used heavily in leading DDoS attacks. A
botnet is a set of compromised devices that are controlled
by a botmaster using Command and Control (C&C) servers.
Botnets consist of three main parts: bots, a Command and
Control (C&C) server, and a botmaster [7]. Traditional bot-
nets are designed in a centralized way, where the control is
done through a single C&C server that can be a single point
of failure. However, modern botnets are designed in a decen-
tralized way, where each bot is a C&C server, so it becomes
challenging to detect and stop these botnets, since control
can be done from various devices [7].

In the last few years, many botnet detection algorithms
have been proposed, the most promising are those based on
community behavior analysis [8]. These algorithms assume
communication among bots as a distinct feature of distributed
botnets. In other words, these algorithms exploit the fact that
each bot plays the C&C server role, and this makes commu-
nications among such bots higher than the ones of benign
devices. However, in real settings, these solutions might not
be so effective as they have to cope with botnet attacks run-
ning on different realms (e.g., sub-networks), each one con-
trolled by a different actor (e.g., different IoT vendors, ISP
providers, etc.), which does not give the complete picture of
the real network flow. In order to make this solution effec-
tive, the detection process should run across several realms,
assuming that involved actors trust each other and share their
data to collaboratively detect malware. However, in a real
life scenario, the solution should be deployed in large net-
works, which makes the trust component much challenging
to achieve. Since we cannot assume different actors trust
each other, there is the need of a framework that facilitates
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the process of sharing malware detection related data.

AutoBotCatcher has been proposed as a preliminary so-
lution to cope with trust issue in data sharing for malware de-
tection [32]. It leverages on the PeerHunter community de-
tection algorithm [47] and exploits a permissioned blockch-
ain to dynamically and collaboratively detect botnets. In Au-
toBotCatcher, gateways monitor their sub-networks and col-
lect the network flows locally. Then, they locally convert
network flows into a PeerHunter-supported format and send
them to the blockchain. Using the network flows, blockchain
peers construct a communication graph via smart contract
execution. Then, this graph is used to detect communities
and thus botnets. To ensure the correct execution of the
detection, AutoBotCatcher detection process leverages on
smart contracts whose execution has to be validated via bloc-
kchain distributed consensus, in particular via Practical Byz-
antine fault tolerance (PBFT) consensus algorithm.

The work presented in [32] illustrates only the theoretical
design of AutoBotCatcher. Deploying it in a real life envi-
ronment comes with various challenges. First, botnet detec-
tion in IoT environments is particularly challenging because
detection process needs to be fast and accurate, but IoT de-
vices have limited resources. There is, therefore, the need
to optimize the botnet detection algorithm to run dynami-
cally in an incremental manner. Second, in AutoBotCatcher,
devices’ IP addresses are shared in a plain-text source-dest-
ination format in the blockchain. However, since blockchain
is transparent, the sharing of this information might repre-
sent a violation of the privacy of devices’ owners. Indeed,
the detection process relies on constructing a graph from
the source-destination entries. This graph might reveal the
structure of gateways’ sub-networks including their devices
and links they make with other devices. Thus, there is the
need of complementing AutoBotCatcher with a privacy-pres-
erving layer able to avoid devices’ re-identification by, at the
same time, supporting a good accuracy and fast botnet de-
tection.

In order to face the above-mentioned challenges, in this
paper, we introduce PAutoBotCatcher which is a blockchain-
based privacy-preserving IoT botnet detection solution. We
leverage on blockchain to ensure a correct execution of the
detection process without assuming trust among the different
involved actors (e.g. IoT devices’ vendors, internet service
providers). Each actor is represented by an equal number of
peers that run the detection process individually and agree on
the final output in order to take the necessary actions after
detection, like cutting off the infected devices from the net-
work (see Section 3). To optimize AutoBotCatcher, we have
introduced a technique to incrementally cache the updates
of AutoBotCatcher’s detection results in order to improve
the running time while maintaining the detection’s accuracy
(see Section 5). Moreover, PAutoBotCatcher adopts a set of
privacy preserving strategies, like graph anonymization and
IP address randomization, to avoid the re-identification of
IoT devices during the botnet detection process.

Contributions. The main contributions of this paper can
be, therefore, summarized as follows:

e optimizing and modifying the community botnet de-
tection algorithm used by AutoBotCatcher (aka Peer-
Hunter) to run dynamically in an incremental manner;

e designing a privacy-preserving layer that can support
dynamic graph construction for botnet detection;

e implementing the first privacy-preserving blockchain-
based botnet detector for 10T}

e running extensive tests on PAutoBotCatcher by simu-
lating a real life situation to demonstrate that blockchain
is a feasible solution for real-time botnet detection.

Outline. The remaining of this paper is organized as fol-
lows. Section 2 gives an overview of the main concepts be-
hind AutoBotCatcher [32], like PeerHunter algorithm, bloc-
kchain, and Hyperledger Fabric? blockchain framework. Af-
ter that, Section 3 presents AutoBotCatcher building blocks.
The privacy-preserving layer is illustrated in Section 4, wher-
eas Section 5 presents the implementation details of PAuto-
BotCatcher. Then, security and privacy issues are discussed
in Section 6. Section 7 discusses the results of our extensive
tests, whereas Section 8 introduces related work. Finally,
Section 9 concludes the paper and discusses future work.

2. Background

In this section, we provide preliminary information on
the PeerHunter algorithm, blockchain, and Hyperledger Fab-
ric, whereas Table 1 reports the main symbols used in the

paper.

2.1. PeerHunter

PeerHunter [47] is a community behavior analysis ap-
proach capable of detecting botnets that communicate in a
peer-to-peer manner. It has been demonstrated to be accu-
rate in detecting bots of unknown types without the need of
a knowledge base.

PeerHunter uses mutual contacts as the main feature to
cluster bots into communities. Since P2P botnets communi-
cate with each other, there is a higher probability to share a
mutual contact compared to P2P legitimate hosts [42].

In PeerHunter, a mutual contacts graph is an undirected
weighted graph MCG = (V, E), where V is a set of ver-
tices representing hosts and E C V' X V is a set of edges,
where (u, v, w) € E means that vertex u and vertex v share
w mutual contacts.

Figure | shows an example of MCG for six nodes, where
the edge between each pair of nodes denotes the number of
their mutual contacts. For instance, node 2 and 4 share two
contacts. In PeerHunter, mutual contacts graphs are repre-
sented as a 2D weighted adjacency matrix, referred to as Mu-
tual Contacts Matrix (MCM), where MCM,, , denotes the
number of mutual contacts between u and v.

In its original formulation [47], PeerHunter has been de-
signed as a static algorithm able to process a single dataset of

3https://www.hyperledger.org/projects/fabric
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Table 1
Table of symbols

Symbol Description
r A detection round
A Duration of a detection round
A, Starting timestamp of a round
MCG Mutual contacts graph
MCM Mutual contacts matrix
MCR Mutual contacts ratio

DD Diversity density

AVGDDR Average diversity density ratio
AVGMCR Average mutual contacts ratio

NT Network flows transaction

a Network flows threshold in a round
MCG,, Mutual contacts graph at round starting at A,
MCM, Mutual contacts matrix at round starting at A,
MCM, Mutual contacts between nodes u and v

u.v

Figure 1: An example of Mutual Contacts Graph.

network flows at once. It exploits two numerical parameters
to decide if a host belongs to a botnet or not. The first metric
is the average of the diversity density computed for all hosts
in network (AVGDDR). Given a node u, its diversity den-
sity (DD) is the number of distinct 16-bit IP prefixes in u’s
network flows’ destination IP addresses. The second metric
is the mutual contacts ratio (MCR) between a pair of hosts.
Given two nodes, MCR is the number of mutual contacts be-
tween them, divided by the number of total distinct contacts
that they have. PeerHunter considers the average of the mu-
tual contacts ratio AVGMCR, that is, the average of MCR of
all hosts. The thresholds for AVGDDR and AVGMCR are
pre-defined at the deployment of the system, so when a host
exceeds them, it is labeled as a bot.

2.2. Blockchain

Blockchain is a distributed ledger, maintained by a peer-
to-peer network, that stores transactions modeling the results
of interactions between peers [39]. Transactions are stored
into a structure formed as a chained set of blocks, aka the
blockchain. Not all the transactions submitted by peers are
added to the blockchain, but only those that are considered
valid according to the reference domain. Rules that need to
be checked to assess the validity of a transaction are encoded
into smart contracts, which are autonomously-executed pro-

grams.

Blockchain is designed based on the assumption that there
is no universal trust among all participants [45]. It relies on
the concept of distributed consensus, so a block (i.e., transac-
tions contained in the block) is considered valid if the major-
ity of the peers agree on its validity. This step is referred to
as reaching consensus. Blockchain has different consensus
protocols (e.g., Proof of Work (PoW), Proof of Stake (PoS),
Byzantine Fault Tolerant (BFT) variants) [10].

In our paper, we will focus on Practical Byzantine Fault
Tolerant (PBFT) consensus which is a variant of BFT, that
operates even in the presence of some malicious nodes par-
ticipating in the consensus process. It is based on the leader-
follower paradigm so that a leader can sequentially order
transactions to be processed by the nodes participating in
consensus. So, they will validate all transactions in the same
order. The leader is elected among nodes participating in the
network (aka orderers), thus the "leader" role is not perma-
nent (see Section 2.3 for more details). It is worth mention-
ing that PBFT is designed to properly operate if malicious
nodes are strictly less than 1 of total nodes.

The properties of blockchain being a distributed ledger
makes the blockchain immutable, so it is a tamper-resistant
technology. All the participating members in the blockchain
have a copy of the ledger, so if a malicious actor wants to
tamper with the blocks that were already validated, it needs
to modify all the versions stored at the level of any member,
which is impossible unless the malicious actor compromises
a certain number of the participating members, which de-
pends on the adopted consensus algorithm.

There are two types of blockchains: public and permis-
sioned blockchains. Public blockchains are accessible by ev-
eryone and any peer can read and write to the blockchain. In
other words, all the peers can participate in the consensus
process. For permissioned blockchains, only selected and
predefined peers can participate in consensus. So, only the
predefined peers can write to the blockchain and access the
shared data [22].

In PAutoBotCatcher, we exploit a permissioned PBFT
blockchain. We adopt it because we want limited member-
ship. So, only selected organizations (e.g. IoT vendors, in-
ternet service providers, etc.) can join the network.

2.3. Hyperledger Fabric

We adopt Hyperledger Fabric as our permissioned block-
chain framework. It represents a valuable choice to develop
PAutoBotCatcher, as it is a performant and flexible block-
chain framework. The main aspect that makes this frame-
work a good choice is its scalability [22]. Hyperledger Fab-
ric processes up to 3,000 transactions per second (tps) that
can be scaled up to 20,000 tps with some pluggable modules
[9]. In addition, Hyperledger Fabric supports different lan-
guages to implement smart contracts, such as Java, Golang,
and JavaScript.

In what follows, we briefly describe the key concepts of
this blockchain framework. We refer the interested readers
to [12] for more details.
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Peers. Peers are the network’s members that can interact
with the blockchain. All nodes can submit and read transac-
tions. In addition, some nodes can also run smart contracts
and participate in consensus.

Organizations. Organizations are entities that take part
to the network.

World State. A world state or ledger state is a key-value
database, where various entries (i.e., transactions’ numbers
in the transaction pool, transactions’ statuses, current block,
etc...) are saved.

Orderers. These are a subset of peers that aim to keep
the ledger state consistent across the network. Orderers are
responsible for ordering all transactions. They do not partic-
ipate neither in the execution nor in the validation of trans-
actions.

Endorsement policies. Each smart contract (chaincode
in Hyperledger Fabric) has to be run by all peers that par-
ticipate in consensus. Each chaincode might have its own
endorsement policy stating how many peers have to execute
it. For instance, a chaincode A might have an endorsement
policy that states that only two peers must agree on the chain-
code’s output. On the other hand, there might be a chaincode
B that requires all the peers to agree on its output (i.e., the
default endorsement policy in Hyperledger Fabric).

3. AutoBotCatcher

AutoBotCatcher exploits a PBFT permissioned block-
chain to dynamically and collaboratively detect botnets, bas-
ed on PeerHunter community detection algorithm. AutoBot-
Catcher is meant to be deployed in environments where IoT
networks consist of devices and gateways. In particular, de-
vices could be independent IoT devices accessing internet
(i.e., devices with cellular capabilities), or IoT devices be-
hind NATs (Network Address Translation) connected to a
gateway. In case of independent devices, they have their own
unique IP address. In contrast, for devices behind NATS, the
uniqueness of the IP address depends on the implementation
of the NAT. Two main cases are possible: i) all devices in
the sub-network of a router/gateway share the same prefix of
the gateway’s public IP address, but they differ in the suffix;
or ii) all devices in the sub-network have the same IP address
but each device is mapped to a specific port.

In AutoBotCatcher, gateways serve as interfaces between
IoT devices from one side and blockchain and the internet
from another side. They monitor the network flows in their
sub-networks, store them locally, and use them to create a
transaction, referred to as Network Transaction. These are,
then, submitted to the blockchain for the validation.

In addition, the system includes particular peers, called
block generators. These nodes run the botnet detection mech-
anism and participate in the coordination process to vote on
the validity of the detection output. We assume that block
generators peers are provided only by involved organizations
(e.g., IoT vendors, ISPs, etc.) in equal shares.

AutoBotCatcher workflow is shown in Figure 2. The
processes executed by block generators are represented as

NTs - | subsetof NTs
TX Pool

Network Flows Blockchain
Pre-Processing Operations

Round
finished?
Perturbation | 0ld Communi ities Yes

Check ‘j—{ Y

Communi ity Set | Community Graph
Detection | Extraction

Network
Traffic Flow

Identify Bots

Figure 2: AutoBotCatcher workflow

No

Botnet
Check

| “New Communi itis

purple boxes which also denote the steps of the botnet de-
tection algorithm. The cyan box represents the process exe-
cuted by gateways, whereas the orange box represents a pro-
cess that is executed by either gateways or block generators.
The details of each step are discussed in what follows.

Network flows pre-processing. This process is perfor-
med by gateways that constantly monitor and sniff network
traffic in their sub-networks. Gateways keep track of IP ad-
dresses in whitelists and blacklists.

A blacklist contains the IP addresses of IoT devices that
were identified as bots. In contrast, whitelists contain IP ad-
dresses of legitimate IoT devices. If a host was not detected
as a bot in the previous execution but it is detected as bot in
the current execution, it is automatically removed from the
whitelist and moved into blacklist.

Definition 1. Network Flow Traffic. ([32]) Network flow
traffic is modelled as a tuple: N etworkFlow = (ipg.. Dy
proto), where ip,,. and ip,y are the source and destina-
tion IP address of the sender and receiver IoT device, re-
spectively, and proto is the adopted protocol, with proto €
{tep,udp}.*

Gateways create network flows transactions (NTs), for-
mally defined as follows.

Definition 2. Network Flows Transaction. ([32]) A net-
work flows transaction is defined as: NT = (Device,,.,
NetworkFlow, Pool ,;,, T), where Device,, is the unique
public key of the gateway that sent the transaction, Pool .,
is the public key of the transaction pool, whereas T is the
timestamp when the transaction was submitted.

Gateways are connected to a transaction pool, which is
a space where transactions are stored before being validated
by the network and finally added to the blockchain.

Blockchain operations. This step, shown in orange in
Figure 2, is an incremental process executed in rounds at
fixed time intervals. The process is executed by block gen-
erators that generate blocks of network flows transactions,
NTs, received in the current round. To avoid flooding the
system with too many blocks, we define a threshold « as the

4The considered protocols are Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP).
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maximum number of NTs processed in a round. In order to
generate blocks in a round I'y , a block generator is selected
based on an election process.

The selected block generator takes a subset of NTs from
the transactions pool containing all NTs generated during the
last round, and not exceeding the a threshold, and forms a
block. The block includes a block header, containing key-
value pairs denoting the block number, and hashes of cur-
rent and previous block. In addition, it contains blockdata,
representing the submitted network flows transactions, and
block metadata, containing the certificate and signature of
the block creator, used to verify the block by network nodes.
Then, it broadcasts the block to all the other block genera-
tors.

Since AutoBotCatcher exploits a PBFT blockchain, the
selected block generator shall get the approval of at least 2
of the total number of block generators to consider the block
as valid.

To initiate the detection process and trigger the corre-
sponding chaincode, gateways submit detection transactions.
In particular, to avoid that two or more gateways submit de-
tection transactions in the same time frame, AutoBotCatcher
randomly selects the gateway that has to submit the detection
transaction in a specific time frame.

Definition 3. Detection Transaction. ([32]) A detection tra-
nsaction is defined as a tuple: DT = (Device,3,,T10rt> Tonas
Pool .44, T), where Ty,,,, is the transaction’s start times-
tamp, T,,, is its end timestamp, Device,,, is the unique
public key of the device that sent the transaction, Pool,;,
is the public key of the transaction pool that the gateway is
connected to send the transaction, and T is the transaction

timestamp.

Block generators run the detection process once a detec-
tion transaction is submitted. They run it on network flows
transactions submitted in the timeframe specified by the de-
tection transaction. The detection process starts with the
graph extraction step explained in what follows.

Graph extraction. This is the first step of PeerHunter
botnet detection algorithm. It is entirely executed by block
generators that generate/update the mutual contacts graph
M CG based on new NTs collected during round I'y . More
specifically, block generators at round I'y - perform the fol-
lowing steps on MCM,  to obtain MCM Ay first, they
update the number of mutual contacts, aka the weights of
edges, based on network flows transactions collected in round
La second, they add vertices and edges representing new
connections of IoT devices; finally, they remove vertices, if
corresponding devices are no longer a part of the network.

Community detection. This is the second step of Peer-
Hunter. This process is executed by block generators to per-
form dynamic community discovery, by taking as input the
mutual contacts graph MCG Ay updated in previous rounds
and saved in blockchain state.

Perturbation check. This is the third step of PeerHunter
botnet detection algorithm. This process is executed by block

generators to keep track of the updates (i.e., IP addresses ad-
ditions and removals) on the communities discovered in the
previous round. For botnet communities, IP addresses are
saved in two lists shared with gateways, namely additions to
blacklist and removals from blacklist.

Botnet check. This is the forth step of PeerHunter and
it is executed by block generators to classify communities as
benign or botnet. The detection mechanism in PeerHunter is
based on two observations: first, members of botnets com-
municate with each other to exchange commands, so, they
have higher mutual contacts; second, botmasters or attack
targets communicate with different nodes that are not a part
of the botnet, called pivotal nodes [40], which lead to higher
mutual contacts as well.

Identify Botnet. This is the last step of PeerHunter,
which updates the local blacklists according to the results
of the previous step. The process is executed by block gen-
erators by broadcasting the updated lists after confirming the
validity of the updates.

4. Privacy-preserving Layer

The original version of AutoBotCatcher [32] does not
protect the identity of IoT devices since network flows, shared
in the blockchain, contain real IoT devices’ IP addresses.

In general, from public IP addresses (of routers or IoT
devices), sensitive information can be inferred, such as the
geographic location, services that the IoT device is provid-
ing, IoT device’s vendor, and thus its public vulnerabilities,
etc. (see e.g., [18]).

Example 1. Let us consider a network where there is a gate-
way/router which implements a NAT. Suppose the router has
the public IP address 41.25.86.44, whereas an IoT device
in its subnet has the local IP address 192.168.1.2. The loT
device uses port TCP/9100, and it is accessed from inter-
net. The IoT device local IP address will be translated to
the router’s public IP address and port 41.25.86.44:9100.
Thus, an attacker can infer the geographic location of this
device, the service that this IoT device is providing (print-
ing, in this case), the vendor (HP JetDirect printer, in this
case), and also the public vulnerabilities of this printer, by
checking exploits’ databases, such as Exploit-db°.

A naive solution could be replacing IP addresses with
fake ones. However, this is not enough, as an IoT device
could be re-identified by its communication patterns, as the
following example clarifies.

Example 2. Let us consider the gateway’s sub-network rep-
resented in Figure 3. where IoT devices’ IP addresses have
been randomized. Let us assume that an attacker knows that
a target device in the sub-network communicates with ex-
actly three other 10T devices. By exploiting this knowledge,
the IoT device with randomized IP address 6.3.55.2 can be
re-identified since it is the only node in the sub-network with
three connections.
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Subnetwork @

Figure 3: An example of identity leakage during network flows
processing

Our privacy-preserving layer takes into account both sce-
narios where IoT devices have their own IP address (i.e.,
IoT devices with cellular capabilities), as well as the case
where IoT devices are behind a NAT (i.e., connected to an ac-
cess point). To avoid re-identification, we have adopted two
anonymization techniques in our privacy-preserving layer.
The first is the mapping of the real 16-bit prefix of an IP ad-
dress to another valid but fake prefix, following the approach
proposed in [3]. Moreover, to avoid devices’ re-identification
due to the knowledge of their connections, we anonymize the
graph, leveraging on (k,l)-anonymization [6]. Among dif-
ferent graph anonymization techniques, such as k-anonymity

[38] and I-diversity [24], we select (k,])-anonymization since:

1) it achieves the same privacy guarantees proposed by other
techniques while running in polynomial time, which is crit-
ical due to the size of graphs we are dealing with; ii) it min-
imally adds edges to the generated graph, without removing
edges or nodes, which preserve the accuracy of the detection
algorithm. Figure 4 depicts PAutoBotCatcher’s architecture.
It is an extension of Figure 2 with additional anonymization
modules. The first anonymization module is IP addresses’
randomization executed by gateways, where they randomize
IP addresses monitored in their sub-networks before publi-
cation in the blockchain. The second anonymization step is
graph anonymization (shown in green). It is executed by the
graph aggregator, an external trusted entity that does not par-
ticipate in consensus, but it can read and send transactions.
It gets the gateways’ networks flows from the blockchain, ag-
gregates them to form a merged graph, and anonymizes the
resulting graph using (k,l)-anonymization.

4.1. IP Addresses Randomization

The first step of our privacy-preserving layer is to re-
place the IoT devices and gateways’ IP addresses with fake IP
addresses while keeping PeerHunter algorithm operational.
We recall that the detection algorithm uses only IP addresses
prefixes (i.e., the first 16 bits) to identify nodes and build a
mutual contacts graph. Thus, this anonymization step should
preserve the IP addresses’ prefixes.

A first solution is that each gateway maps locally and
independently the real IP addresses prefixes with fake ones
producing its own mappings. However, in this way, com-

Shttps://www.exploit-db.com

munications among gateways are not preserved. Indeed, if
gateway A and B talk to gateway C, A will use its own ran-
domized prefix while B will use a different prefix. Thus,
for the same gateway, two prefixes will be used. This prop-
erty preserves the privacy of communications among gate-
ways, but it limits the capabilities of PeerHunter in detecting
botnets since the links between gateways will not be visi-
ble to PeerHunter. To avoid this situation, we assume that
gateways share the assigned randomized prefixes. For ex-
ample, if gateways A and B communicate with a gateway
C, A and B will use the same prefix to communicate with
C instead of using different prefixes for the same gateway.
So, when a gateway is communicating with another one, it
uses shared mappings instead of generating new ones. In
order to keep the mappings available and consistent, they
should not be saved locally by gateways since they have lim-
ited storage space, and they are not highly available. Hence,
block generators maintain a distributed key-value store to
save mappings of real prefixes with fake ones for each gate-
way. Each gateway encrypts its own mappings and stores
them in the distributed key-value store. So, block generators
do not have access to the mappings, but rather they just main-
tain the records. The shared mappings are encrypted with a
key shared among gateways, so they can read and decrypt
them (see Section 5 for implementation details). It is worth
mentioning that external services’ mappings are not shared
with other gateways because they might reveal information
about the services that an IoT device provides, its vendor,
vendor’s public vulnerabilities, etc. So, each gateway pre-
serves its own external services’ mappings.

The suffixes (i.e., the last 16 bits) are randomized at each
round, so the same device can have multiple IP addresses.
The randomization of the suffixes does not affect PeerHunter,
and it adds a level of privacy where an attacker cannot infer
the size of a gateway’s sub-network (see Section 6.2). How-
ever, suffix randomization is not enough to protect an IoT
device from re-identification since its communications are
still exposed. Hence, the need for a graph anonymization
technique arises.

4.2. (k,)-Anonymization

In the context of PAutoBotCatcher, each gateway moni-
tors its sub-network during around Iy to submit its network
flows in round I Ay These network flows form a graph, re-
ferred to in what follows as sub-graph, for the sake of clarity.

The second step is anonymizing the graph obtained by
merging the gateways’ sub-graphs shared at each round. At
each round, each gateway locally randomizes its IP addresses
and encrypts its sub-graph with the public key of the graph
aggregator. The encrypted sub-graph is shared in the block-
chain (see Section 5.2 for implementation details). At the
submission of a detection transaction, the graph aggregator
gets the encrypted sub-graphs from the blockchain, decrypts
them, and aggregates them to form an aggregated graph. We
recall that the latter is a connected graph since we share the
mappings of connections among gateways, sO we preserve
the links among the sub-graphs.
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In order to anonymize the aggregated graph, PAutoBot-
Catcher leverages on (k,l)-anonymization which aims at ano-
nymizing graphs by introducing minimal additions to the
overall graph structure [6]. (k,[)- anonymization assumes
that an adversary can have the knowledge about the identifier
of a node u, and the direct nodes connected to u. Therefore,
for each node in the anonymized graph, (k,{)- anonymization
requires that there should be at least k other nodes that share
at least [ of its neighbors. k and [ depend on the degree of
anonymization the user wants to achieve. The formal defini-
tion of (k,l)- anonymization is the following.

Definition 4. (k,l)-anonymized graph. ([6]) A graph G =
(V, E) is (k,1)-anonymous, if V v € V there exists a set of
vertices U C V', where v & U such that: 1) |U| > k, and 2)
Yu € U, uand v share at least | neighbors.

(k,1)- anonymization implies that for each node v in the
anonymized graph, there are at least k other nodes sharing
I of v’s neighbors. (k,1)-anonymization attempts to hide the
identity of nodes by creating groups of k nodes that look
similar by sharing same neighbors, which are represented by
the / factor. Any vertex in the original graph cannot be re-
identified in one of its (k,])-anonymous versions with a con-
fidence greater than 1 Inorder to anonymize a graph using
(k,1)-anonymization, the work in [6] uses residual anonymity
representing the level of anonymization of a graph.

Definition 5. Residual anonymity. ([6]) Let G = (V,E)
be a graph to be made (k,l1)-anonymous. Let us consider a
node v € V and suppose that k' other nodes in G share at
least I of v’s neighbors. We define the residual anonymity of
v as r(v) = max{k' — k,0}. The residual anonymity of G is
rG) =Y oy rv).

The algorithm proposed in [6] computes the residual anony-
mity of each node and aggregates the residual anonymities
such that the aggregation is equal to zero for an anonymized
graph. It aims to add the minimum number of edges to get
a (k,])-anonymized graph. It runs in two steps: 1) choose
randomly a node w € V, add edges to form (k+I)-clique
at w, and compute the residual anonymity of the graph G;
2) continuously find triplets of edges uv, vw, uw that maxi-
mally decrease the residual anonymity of the graph, add the
new edges (i.e., uv, vw, and uw) to the graph, and update the
residual anonymity of G. Finding triplets is a greedy process
where the algorithm tries all edges combinations that maxi-
mally reduce the residual anonymity.

The performance of the (k,])-anonymization algorithm
[6] has been tested with different values of k and [ for 4 real-
life datasets of different sizes (see [26] for more details) .
These experiments showed that (k,1)-anonymization can be
used in real-life scenarios since it provides a good trade-off
between information loss and performance.

Once the graph aggregator has anonymized the aggre-
gated graph at " Ay this is given as input to the PeerHunter
algorithm to update the MCG used for botnet detection.
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5. Implementation

In this section, we present the implementation of PAu-
toBotCatcher. In doing that, we base our discussion on the
PAutoBotCatcher architecture illustrated in Figure 4.

5.1. Network Flows Uploading

Gateways handle network flows uploading. This process
requires two steps (cyan boxes in Figure 4), namely IP ad-
dresses randomization and network flows pre-processing.

IP addresses randomization For each network flow, this
step aims to randomize destination and source IP addresses
by replacing the real IP addresses with fake ones. This pro-
cess is done using a Python script implementing two main
steps. The first is generating fake IP addresses’ prefixes for
IoT devices inside the gateway sub-network. To generate
these fake prefixes, we randomly choose the first 8 bits from
a valid range (from O to 255). The same process is used to
generate the last 8 bits. Once the random values have been
generated, we check if the obtained prefix is a valid IP pre-
fix. We also check that the prefix has not been assigned to
two devices in the same sub-network. This check cannot
be performed on random prefixes created by other gateways,
since mappings are encrypted (see later on in this section).
However, the probability that two devices in different sub-
networks have the same prefix is very small (this is estimated
as the number of valid permutations that we can get from 16
bits prefix, that is 4.22 X 107#) and the mappings change in
every round.

Mappings between the real IP addresses and the obtained
randomized IP addresses are encrypted with the gateway pub-
lic key and stored in Redis key-value store managed by block
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generators. Thus, given a randomized IP address only the
gateway who generates it is able to retrieve the real IP ad-
dress by decrypting with its private key. This storage is use-
ful to make the gateway able to check if the IP address have
been already randomized, before generating a new fake IP
address.

The second phase requires the randomization of IP ad-
dress of devices outside the gateway sub-network, that is,
external services, IoT devices or gateways with which in-
ternal IoT devices communicate. We recall that in case of
gateways, their IP addresses have to be randomized with the
same fake IP prefix through all sub-networks to preserve sub-
networks’ connections in the aggregate graph. For this pur-
pose, prefixes assigned to gateways have to be known by all
the gateways. To support this sharing, the mapping between
gateway’s real IP address and randomized one is encrypted
with a key shared among all gateways and stored on the Re-
dis store. As such, when the gateway has to randomize the IP
address of another gateway, it checks on Redis store if the IP
address has already been assigned a randomized IP address.
If not, it will generate a new one.

Network pre-processing Once IP addresses have been
randomized, network flows have to be packed in a network
flows transaction (see Definition 2). This step is done by the
gateway, which also saves the flows in a compressed record
on the ledger state. The key used for this record consists of
the timestamp of record generation and the gateway’s public
key (to identify records generated on the same timestamps),
in such a way to speed up time range queries.

5.2. Graph Anonymization

As introduced in Section 4, the submission of network
flows is done in rounds. More precisely, after the local IP
randomization, each gateway encrypts its sub-graph with the
graph aggregator’s public key and share it in the blockchain.
Then, the graph aggregator gets the sub-graphs from the bloc-
kchain, decrypts them in order to aggregate and anonymize
them. Graph anonymization is implemented by two main
components: the mapper and the builder. The mapper is
an utility that maps IP addresses to integers for an easier
nodes representation. The builder anonymizes the graph us-

ing (k,l)-anonymization, by adding a minimal number of edges.

The added edges are converted to the IP format and appended
to the anonymized network flows that will be submitted in
the next round. Once the aggregated graph is anonymized,
the graph aggregator publishes it in the blockchain for bot-
net detection. Since constructing an anonymized graph is a
heavy process, the implementation was done in C++, and
all these components are run sequentially.

5.3. Blockchain Operations

In this section, we describe how we have implemented
the blockchain operations (orange box in Figure 4). Before
this, we need to introduce the notion of detection state.

5.3.1. Detection State
The botnet detection process has to be done in a incre-
mental way, to avoid re-running the process from scratch ev-

ery time new network flows are submitted. For this purpose,
we need to store any progress after each execution of the
botnet detection process. In particular, we need to store the
adjacency list of each node in the network, the latest status
of the mutual contacts graph MCG and the updated list of
detected bots. These information are stored via Detection
State, defined as follows.

Definition 6. Detection State. Let V' be the set of nodes in

the anonymized graph. Let Ad jLists ={AdjList(v) | Vv €
V'} be the set of all adjacency lists, denoted as Adj List(v),

foreachvinV. Let MCG = (V, E) be the current mutual

contacts graph built on the anonymized graph, and blacklist

be the list of detected bots so far. A detection state DS is a

tuple (AdjLists, MCG, blacklist).

According to Definition 6, DetectionState has three parts:
AdjLists, MCG and blacklist. The state contains a different
key-value for each distinct adjacency list, where the host is
the key and the set of connected hosts are the value. At the
end of the detection round, AdjLists is updated only if any
change happened from the previous round. The other two
elements of DetectionState do not occupy relevant memory
space (considering that the MCG is compressed), so they are
directly written on the ledger at the end of each round.

Finally, the MCG, the blacklist, and the hashes of key-
value pairs storing each distinct adjacency list are concate-
nated together and hashed into a unique value. These hash
values are saved in a dedicated state DetectionStateMeta-
data, used to record the last version of the DetectionState and
containing the metadata to properly retrieve it when needed.

Example 3. Let us consider the code snippets shown in Fig-
ure 6. It considers a network with two nodes 78.77.09.12
and 66.56.45.99 connected to some external nodes. It shows
an example of two versions of the detection state. An ini-
tial version containing the adjacency lists of all nodes in the
original empty graph, an initialized Mutual Contacts Graph,
and an empty blacklist. The second version contains the up-
dated adjacency lists, the updated Mutual Contacts Graph,
and the updated blacklist, which contains the detected bot
23.67.45.23.

5.3.2. Consensus

A basic requirement of our system is the agreement on
the botnet detection output, which is achieved thanks to the
distributed consensus. We recall that the consensus is re-
quired for every transaction (i.e., network flows and detec-
tion transactions in our scenario) and is executed according
the adopted endorsement policies (see Section 2). In PAuto-
BotCatcher, we designed two different endorsement policies
for network flows transactions and detection transactions.

Regarding network flows transactions, these are submit-
ted only by gateways which do not participate in consensus.
As such, we do not require additional validation rules for
their consensus, by adopting the default endorsement policy
which requires validation from any organization. We recall
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{
"key": "detectionState",
"value": {
"AdjLists": [
{
"78.77.09.12": [
"34.65.23.32"
1
{ +

"key": "detectionState", {

"value": { "66.56.45.99": [
st 1, S
"McG": [, ]
"blacklist": [] },

}, 1,
" S, "MCG": [
version®: @ {"78.77.09.12-34.65.23.32": 0},
¥ {"66.56.45.99-23.67.45.23": 0},
{"66.56.45.99-34.65.23,32": 0},
{"78.77.09.12-66.56.45,99": 1}
1,
“blacklist": [
"23.67.45,23"
1
h
"version": 1

}

Figure 6: Examples of detection states

in PAutoBotCatcher, Hyperledger Fabric runs in a permis-
sioned setting, thus each organization is registered. This al-
lows network flows uploading without adding useless over-
head to other organization peers. On the other hand, botnet
detection transactions require consensus from all organiza-
tions. We recall that we assume that each organization par-
ticipates with the same number of block generators to ensure
the fairness of the consensus process. As such, the endorse-
ment policy for the DetectionState transactions requires that
all organizations express their validation on them. Thus, the
DetectionState is stored in all block generators. After that,
if consensus is not reached, the transaction is rejected, and it
will not be broadcasted in the blockchain.

5.4. Botnet Detection Algorithm

Botnet detection consists of the purple boxes in Figure
4. We recall that PAutoBotCatcher leverages on PeerHunter
for botnet detection (see Section 2.1). The original Peer-
Hunter algorithm takes as input the whole dataset (aka net-
work flows) and extracts the bots based on detected commu-
nities. However, to cope with the dynamic nature of our sce-
nario, we made some changes to the original PeerHunter so
that it can support detection on incremental network flows.
In particular, we have re-designed PeerHunter to accept a
DetectionState as input (see Definition 6).

The detection process is initiated by gateways when they
submit a detection transaction. We recall that the detection
process is performed by block generators. As depicted in
Figure 4, the first phase is the extraction of edges for each
host from the anonymized graph shared by the graph aggre-
gator. The extracted edges are used to update the mutual
contacts graph (MCG) that will be included in the round’s
DetectionState.

Given that the final purpose of PeerHunter is to detect
hosts belonging to a P2P botnet, the original PeerHunter im-
plementation builds the mutual contacts graph by adding only
those hosts having a behavior similar to P2P hosts. To select
these hosts, PeerHunter checks different conditions on hosts

connections (e.g., destination diversity of each host), which
are evaluated on the whole dataset [47]. However, in our
scenario, since we process the dataset incrementally, it is re-
quired to check the conditions incrementally. As such, we
have to track which conditions are satisfied over time and
how their states change by edges/nodes updates. For this
purpose, in the MCG, we add edges regardless of PeerHunter
original conditions, so that we can keep track of every pair
of hosts that has at least a mutual contact. To maintain Peer-
Hunter accuracy, the only edges that will be used in the com-
munity extraction phase are the ones complying with Peer-
Hunter requirements for MCG creation. By keeping track
of all mutual contacts, our PeerHunter implementation can
easily determine in every round which existing edges should
be considered again for communities extraction.

6. Security and Privacy Analysis

In this section, we present an analysis of the privacy and
security guarantees of PAutoBotCatcher.

6.1. Threat Model

In this section, we introduce the assumptions on the main
entities involved in PAutoBotCatcher, namely IoT devices,
gateways, block generators, and the graph aggregator. Many
of them are commonly adopted by several proposals target-
ing the 10T scenario (e.g., [14, 34, 35]).

Block generators. We assume that each organization
(e.g., IoT vendor, internet service providers, etc.) that ac-
tively participates in PAutoBotCatcher is represented by an
equal number of peers serving as block generators. We do
not assume that block generators are trusted as they could be-
have maliciously to bring benefits to their corresponding or-
ganization, such as invalidating other organizations’ transac-
tions. However, we rely on blockchain to ensure the correct
smart contract execution, via distributed consensus. Since
in PAutoBotCatcher we adopted the PBFT consensus proto-
col, we assume that % of block generators are trusted (see
Section 6.3 for more details). It is worth mentioning that
this requirement can be reduced to % with less efficient dis-
tributed consensus protocols, like Proof of Work.

Gateways. Gateways interact with the blockchain by
submitting and reading transactions, but they do not partici-
pate in consensus. We assume that gateways are honest-but-
curious. They are honest in the sense that they follow the
protocol, but they are curious about the identities, commu-
nication patterns, and network topologies of other gateways.

IoT devices. We assume them as malicious, because
they can be easily compromised. Notice that IoT devices do
not interact with the blockchain.

Graph aggregator. We assume that it is a trusted ex-
ternal entity. It is a part of the blockchain that can read and
send transactions, but cannot participate in consensus.

6.2. Privacy Attacks

PAutoBotCatcher aims to protect devices’ identities and
communication patterns. These data are collected by gate-
ways. In particular, according to the threat model explained
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above, each gateway has to: i) submit only legitimate net-
work flows observed in its sub-network, ii) change the real IP
addresses to fake IP addresses in the corresponding network
flows, and (iii) encrypt their sub-graphs before publication
in the blockchain. Privacy issues that may happen in PAuto-
BotCatcher under the assumption of honest-but-curious gate-
ways are mainly related to: 1) leaking real IP addresses; 2)
re-identifying an IoT device based on its connections with
other devices; 3) inferring external services with which a
gateway is communicating; 4) inferring the belonging of an
1oT device to a gateway; 5) inferring gateway’s sub-network
topology, and 6) inferring the type (i.e, 10T device or gate-
way) of a communicating device.

Leaking real IP addresses. We recall that IP addresses
are mapped to fake prefixes (i.e., first 16 bits) and random-
ized suffixes (i.e., last 16 bits) at the level of the gateway.
Then, they are shared in the blockchain as Network Flows
Transactions. Thus, the only entity that knows the real IP
address of a device is its gateway.

Re-identifying an IoT device based on its connections
with other devices. We recall that, according to the pro-
posed solution, the locally built sub-graphs by each gateway
are encrypted before being shared in the blockchain. The
local sub-graphs are then aggregated to form an aggregated
graph. The latter is anonymized by the graph aggregator.
We leverage on (k,l)-anonymization privacy guarantees [6]
which ensure that a node cannot be re-identified with a con-
fidence of more than %

Let us consider a curious gateway A that wants to know
the links of a gateway B in the aggregated graph. We con-
sider that gateway A communicated previously with gateway
B. The curious gateway A knows its original and anonymized
sub-graphs. In addition, it can identify its node and the gate-
way B node with which it connected to in the anonymized
aggregated graph. So, a curious gateway A can infer: i) the
fake links added to its node in the aggregated graph, and
ii) the number of links that the node it connected to (i.e., a
node in gateway B sub-network) has in the aggregated graph.
However, it cannot tell if the links are real or fake (except
from its own links).

Inferring external services with which a gateway is
communicating. Since each gateway has its own mapping
of external services with which it communicates, a curious
gateway cannot infer the service it provides. For example, let
us consider two gateways A and B whose anonymized IP ad-
dresses are 65.24.58.11 and 158.36.89.14, respectively. Sup-
pose the two gateways communicate with the same weather
forecast service. Since, for the same service, the prefixes
used by the two gateways are different, so the external ser-
vice cannot be inferred from the network flows.

Inferring the belonging of an IoT device to a gateway.
Since the same IoT device can have different anonymized
random IP addresses, a curious gateway cannot infer another
gateway’s network topology (e.g., the size of network). IoT
devices and the gateway itself have the same prefix, but dif-
ferent randomized suffixes at each round. For example, let
us consider the worst case where a gateway A has only one

device, and suppose that the real external IP address of the
gateway is 78.52.52.3. Suppose that the IoT device commu-
nicates with anonymized IP addresses 58.36.9.3 and 47.25.31
.56, respectively. The first communication from the IoT de-
vice in gateway A to the first anonymized IP address is repre-
sented in the graph as 96.33.25.14-58.36.9.3 where the sec-
ond communication is represented as 96.33.44.78-47.25.31
.56. We can notice that the prefix 96.33 is the same, since it
is the mapping of 78.52. But the suffix is randomized (25.14
in the first communication and 44.78 in the second one).
Inferring gateway’s sub-network topology. As we me-
ntioned previously, IoT devices and gateways can have mul-
tiple anonymized IP addresses, so a curious gateway can-
not infer a target gateway’s network topology (e.g., the exact
number of devices in a target gateway’s sub-network).
Inferring the type (i.e, IoT device or gateway) of a
communicating device. Since IoT devices use the same
prefix for both internal and external communications (e.g.,
78.52 is mapped to 96.33), the type of the communicating
device cannot be inferred from its anonymized IP address.

6.3. Security Attacks

Blockchains are vulnerable to some security attacks that
have been deeply discussed in the literature [21, 20, 27]. In
what follows, we consider majority attacks as the most rele-
vant kind of attacks for PAutoBotCatcher.

Majority attacks. Majority attacks aim to control the
system by having a majority of entities that participate in
consensus. Controlling the system allows the majority to in-
validate transactions, include only transactions that it wants
in a block, etc. Blockchains have different percentages to
achieve majority depending on their consensus algorithm.
For example, for PoW and PoS, the majority is reached after
51%. In contrast, for PBFT, the consensus protocol adopted
by PAutoBotCatcher, the majority can be reached by only
taking down % of the system [28]. In PAutoBotCatcher, each
organization 1s represented by an equal number of block gen-
erators, so an organization cannot have an higher number of
block generators than other organizations to control the sys-
tem. Since PAutoBotCatcher leverages on PBFT, it assumes
% of the block generators to be trusted, so more than % of
organizations should collude to take down the system.

We are aware of other attacks that threat blockchain and
P2P solutions in general, such as collusion attacks, free rid-
ing, and DoS attacks. Collusion attacks refer to a kind of
attack where entities in a distributed system collaborate to
reach a common goal to interrupt the normal operation of
the system. This attack can be performed by entities who
participate in consensus (e.g., block generators) and enti-
ties who do not (e.g., gateways). In contrast, free riding is a
type of attack where entities benefit from the system with-
out contributing to it. In PAutoBotCatcher, gateways could
read detection states shared in the blockchain without shar-
ing their anonymized network flows in the blockchain. In
addition, DoS attacks (Denial of Service attacks) refer to a
type of attacks where individual participating entities in the
blockchain try to flood the system with transactions to make
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Table 2
Experiments settings
Environment CPU Cores 8 vCPUs
RAM 30 GB
Hard Drive 128 GB SSD

Operating System

Ubuntu 18.04 LTS (64-bit)

Platform Blockchain Framework Hyperledger Fabric 2.2
Chaincode Language Java
Dataset # of P2P Legitimate Hosts 60
# of P2P Botnet Hosts 37
# of Network Flows 38,189,903
Size 1.7 GB

the nodes participating in consensus unavailable. Thus, the
services provided by the blockchain become unavailable as
well. This attack can be also performed when participat-
ing entities collude to make the system unavailable, and it is
known as Distributed Denial of Service (DDoS). However,
since our threat model considers gateways to be honest but
curious and 2 of block generators to be trusted, these attacks
are out of the scope for PAutoBotCatcher.

7. Experimental Results

In this section, we present results of experiments we car-
ried out on PAutoBotCatcher. For this purpose, we consider
the use case scenario shown in Figure 4, consisting of: 3
block generators, each one belonging to a different organiza-
tion; and 3 gateways, representing 3 different sub-networks
of IoT devices. We have chosen this architecture to simu-
late a real world use case, with three smart homes connected
via a gateway and three vendors. We developed and tested
our solution on one 64-bit Ubuntu 18.04 LTS Google Cloud
Platform virtual machine with 8 vCPUs, 30 GB RAM, and
128 GB SSD. We built the permissioned blockchain using
Hyperledger Fabric v2.2 with Java 8 chaincode. The IoT
devices, gateways, and block generators were simulated as
Docker® containers. The source code of our system is open
sourced for reproduction. It is available in three main com-
ponents: PAutoBotCatcher’, Botnet Detection Smart Con-
tract®, and Privacy-preserving Layer”. Table 2 shows the
settings used to conduct the experiments.

7.1. Datasets

To evaluate the accuracy and performance of PAutoBot-
Catcher, we need a dataset containing both P2P legitimate
traffic as well as traffic with botnets. For this purpose, we
built a dataset with three different types of traffic: (a) P2P
legitimate traffic, (b) P2P botnet traffic, and (c) background
network traffic.

Shttps://www.docker.com/
7https://github.com/Lekssays/pautobotcatcher
8https://gitlab.com/lucalanda/botnetdetectionchaincode
“https://github.com/Lekssays/networkflowanony

Table 3
P2P legitimate traffic (24hrs)
Application || # of Hosts || # of Flows Size
eMule 16 3,581,559 134M
uTorrent 14 7,523,902 292M
Vuze 14 6,189,657 237T™M
FrostWire 16 3,287,939 125M

P2P legitimate traffic: we used the dataset in [47] and
described in Table 3. The dataset contains traffic of well-
known P2P applications. In particular, it contains traffic gen-
erated by 4 eMule hosts, 14 uTorrent hosts, 14 Vuze hosts,
and 16 FrostWire hosts. We randomly chose 24 hours of
network traffic for each application.

P2P botnet traffic: again, we used the dataset in [47]
and described in Table 4, that highlights the number of in-
fected hosts, number of network flows per bot, and the size of
each file containing network flows. The dataset contains 13
hosts infected by Storm, '” and 3 hosts infected by Waledac.'!
We randomly chose 24 hours of network traffic of each bot-
net.

Background network traffic: we used the dataset down-
loaded from MAWI Working Group Traffic Archiveday [11].
In particular, we downloaded 24 hours of network flows in
the 2020/15/1 day, containing 92.4% of TCP traffic and 7.6%
of UDP traffic, and a total of 133,824,832 anonymized net-
work flows (see Table 5).

For our experiments, we have used ARGUS [2] on back-
ground network traffic dataset in order to convert the .pcap
files to triple format (cfr. Definition 1). For the other two
datasets, we have implemented a Python script to convert
them to triple format.

We have mixed the three raw datasets in a way that re-
spects a real life scenario and challenges the PeerHunter de-

10nttps://www.networkworld.com/article/2286172/storm—the-largest-
botnet-in-the-world-.html

https://threatpost.com/waledac-botnet-now-completely-crippled-
experts-say-031610/73694/
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Table 4
P2P botnet traffic (24hrs)
Botnet # of Hosts || # of Flows Size
Storm 13 8,603,399 312M
Waledec 3 1,109,508 41M
Kelihos 8 122,182 5M
ZeroAccess 8 709,299 26M
Sality 5 5,599,435 211M
Table 5
Background network traffic
Date Duration || # of Flows Size
2020/15/1 || 24 hrs || 133,824,832 || 2.8G

tection process. In particular, we have considered that if we
randomly mix the datasets, the probability that a host will not
have any mutual contact is high, which makes the detection
easier for PeerHunter. Indeed, less mutual contacts means a
disconnected legitimate community which makes the detec-
tion algorithm easier. To avoid this, we mixed the datasets
such that each internal host has at least one mutual contact.
The resulting merged dataset contained 37 botnets hosts and
38,189,903 network flows.

7.2. Experiments

Since we did not change the PeerHunter or (k,1)-anony-
mization algorithms, we focused our experiments mainly on
PAutoBotCatcher performance. Indeed, the only changes on
PeerHunter/anonymization have been done to execute them
as a dynamic algorithm. These algorithm changes have not
affected the detection accuracy. This has been confirmed
by an experiment, not included in the paper due to lack of
space, where we compared the detection accuracy obtained
by PAutoBotCatcher and PeerHunter when executed on the
same dataset.

In our experiments, we adopt (4,1)-anonymization. This
choice is motivated by the fact that (4,1)-anonymization en-
sures a reasonable trade-off between protection from re-iden-
tification and performance.

Regarding the network flow simulation, it is worth men-
tioning that Hyperledger Fabric can process 3,000 transac-
tion per second (tps). It can also reach up to 20,000 tps with
some plug-and-play modules [9]. In our case, we used plain
Hyperledger Fabric, with no additional modules. Thus, with
5 network flows in each transaction we simulated 75,000 net-
work flows per second (nfps).

As shown in Figure 7, we have tested PAutoBotCatcher
against the original version of AutoBotCatcher, theoretically
introduced in [32], and the standalone implementation of
PeerHunter. The tests were done with predefined thresholds
for PeerHunter parameters, aka AVGDDR and AVGMCR
(see Section 2.1). For AutoBotCatcher, the processed flows
per peer are 2,500 nfps. Thus, with the setting of 3 peers
and 2 threads per peer, the system handled 15,000 nfps with

AutoBotCatcher
PAutoBotCatcher

w
<]

= PeerHunter

.
2

Time In Seconds

0 M 10M 15M 20M 25M 30Mm 35M

Number of Network Flows

Figure 7: PAutoBotCatcher, AutoBotCatcher and PeerHunter
execution time

no issue. We recall that also AutoBotCatcher dynamically
runs the detection process based on rounds, where a round,
with this configuration, contains on average 650,000 net-
work flows. AutoBotCatcher was able to process 38,189,903
network flows in 2,122 seconds on average.

To have a fair comparison with standalone PeerHunter,
we divided the dataset into chunks of 650,000 network flows
to simulate rounds also in PeerHunter. Experiments shown
that PeerHunter was able to process the same number of net-
work flows of AutoBotCatcher but in 954 seconds. Based on
this, we can estimate an overhead of 1,168 seconds due to the
blockchain architecture. In addition, PAutoBotCatcher has
the anomymization layer. As represented in Figure 7, PAuto-
BotCatcher took more time. In particular, it takes 5,396 sec-
onds to process the same number of network flows. Our ex-
periments show that our privacy-preserving layer processes
a network flow in 8.5736 x 107 seconds on average.

Our experiments show that both AutoBotCatcher and PA-
utoBotCatcher can be used in a real life scenario, because
both solutions process a network flow in 5.5564 x 10~ sec-
onds and 1.413x10™* seconds, respectively. This processing
time includes also the latency that occurs when Hyperledger
Fabric is flooded by transactions. This flooding is due to
the fact that our settings include only 3 hosts, simulating 37
infected hosts with more than 7 million transactions in 2h.
With a broader network, this latency can be reduced. This let
us suggest that PAutoBotCatcher can be a good solution for
real-time data processing use cases even under heavy load as
we simulated.

8. Related Work

The field of P2P botnet detection has gone through ex-
tensive research due to the damage that botnets cause to busi-
nesses and organizations [17]. Researchers have been inves-
tigating the topic from various perspectives. Most of the pro-
posed approaches can be categorized into two main groups:
community behavior analysis and network traffic analysis.
The main difference between the two is that to detect bot-
nets, the latter exploits traffic information (e.g., packets size
and contents, communication protocols). In contrast, com-
munity behavior analysis detects botnets based on their com-
munication structure, analyzing the network and the links
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between devices.

- Community behavior analysis approaches. Extensive
research has been done in this area. For instance, authors in
[5] have worked on identifying local members of P2P bot-
nets using mutual contacts. In addition, authors in [23] have
worked on performing group-level behavior analysis on net-
work traffic using Support Vector Machine. The main draw-
back of these methods is that they assume a knowledge base
that contains metadata of previously known botnets. Given
that IoT ecosystems frequently evolve [4], unknown botnets
should also be taken into consideration, so the approaches in
[5] and [23] are impractical in an IoT context. To cope with
this requirement, AutoBotCatcher exploits PeerHunter [47]
that is able to detect unknown botnets which is a key factor
in IoT environments, where new botnets emerge frequently.

- Network traffic analysis approaches. These approaches
can be mainly categorized as: statistical approaches and feat-
ure-based approaches. Statistical approaches use mathemat-
ical methods to model botnet detection, whereas feature-bas-
ed approaches are based on finding features that characterize
botnets.

For statistical approaches, the authors in [44] have used
Mahalanobis distance to calculate the correlation between
nodes in order to detect botnets. Mahalanobis distance can
express correlations among indirectly connected nodes based
on their traffic with commonly connected nodes. In [44], an
iterative algorithm was proposed to get the correlation coeffi-
cient between the nodes with a pre-defined threshold of 85%
to detect P2P botnets. Authors in [19] have proposed a hy-
brid distributed solution that combines a quantitative model
and distributed threat intelligence. The suggested method
aims to strengthen collaborative threat intelligence. This
method uses network flows with the advantages of quan-
titative analysis and rates quality credibility of community
shared intelligence. However, this solution is not dynamic,
and it performs heavy computation and analysis on the pro-
vided data, which makes it not suitable for IoT contexts.

For feature-based approaches, researchers focus on find-
ing mutual features among different hosts that might form
a botnet. Authors in [16] have worked on a machine learn-
ing model to detect traffic similarity. The authors proposed
a two-layers approach for traffic classification based on non-
P2P traffic filtering and conversation features in machine lear-
ning. The first layer filters the non-P2P traffic in order to
reduce the traffic flows to be processed in the second layer
where extraction of conversation features is done. Conver-
sation features, in this layer, are based on data flow features
and flow similarity. [36] proposed a model to track evolu-
tion of a botnet over time using Long Short-Term Memory
(LSTM). The authors in [43] proposed a method to detect
botnets based on extraction of the data packet size and sym-
metric intervals in flows, based on the concept of graphic
symmetry combined with information entropy and session
features. This combination allows obtaining features with
better correlations that are used to detect botnets. Whereas,
authors in [46] suggested a botnet detection system by iden-
tifying all hosts that are likely to be a part of P2P commu-

nications. Then, they derive statistical fingerprints to clas-
sify different types of P2P traffic. These fingerprints are fi-
nally used to distinguish P2P botnet traffic. Authors in [31]
suggested an approach to detect botnets based on network
traffic behaviors. The approach relies on detecting P2P bots
before launching their attack. They evaluated five different
machine learning techniques to satisfy botnet detection re-
quirements: adaptability, novelty detection, and early detec-
tion. However, none of the suggested models satisfy all the
requirements at once. Moreover, authors in [41] and [25]
have worked on deep packet inspection (DPI) to analyze the
content of network traffic, but this technique can be bypassed
by encrypting C&C channels.

However, there are drawbacks in the aforementioned com-
munity behavior and network analysis techniques, that limit
their usage in an IoT environment. From a performance per-
spective, IoT devices have low computational power, so it
would be impractical to run machine learning models on
them unless they are distributed which is not considered in
the suggested models. From a usability perspective, the above
described approaches can detect only botnets that have been
known before and were included in the training dataset, which
is impractical [42] because IoT environments frequently cha-
nge [4].

PAutoBotCatcher exploits PeerHunter that supports de-
tecting previously unknown botnets, which is an important
requirement in an IoT context. In addition, it does not use
any feature extraction method that can be tampered with by
changing packet sizes, encrypting C&C channels, changing
communication frequency, etc. However, it is a static method,
so it is limited to the usage of an already existing dataset.
PAutoBotCatcher receives network flows in real time and ex-
ecute the detection process periodically without the need of
re-initializing the process. So, it detects bots in real time and
in an incremental way.

On the other hand, many work have exploited blockchain
for botnet detection in IoT. The authors in [29] proposed
a collaborative architecture that leverages on blockchain’s
smart contracts to mitigate DDoS attacks performed by vul-
nerable IoT devices based on IP addresses blacklisting. The
authors in [ 13] suggested a defense mechanism against DDoS
attacks performed by IoT devices using Ethereum blockchain.
They integrated communication between IoT devices in an
Ethereum instance, so attacks can be prevented using gas
limit which is provided as a default feature of Ethereum.
Furthermore, the work in [37] suggested a blockchain-based
solution for collaborative detection of botnets performing
DDoS attacks. It exploits smart contracts where rules to
classify network traffic as malicious are defined, and snap-
shots of the network traffic, generated by IoT devices, are
shared in the blockchain. After that, smart contracts are trig-
gered to send alerts to system admins if consensus is reached
on the type of traffic generated. Moreover, [30] proposed
BloSS, which is a blockchain-based framework for informa-
tion sharing between deployed DDoS detection and mitiga-
tion mechanisms to create reports and check if they match
previously defined network rules describing malicious be-
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haviors. Furthermore, the work in [15] discussed a block-
chain-based solution to build, distributed DNS services that
are resilient to DDoS attacks, since this kind of attacks is
usually led by botnets, and it causes internet unavailability
for millions of users (see e.g., [1]).

PAutoBotCatcher differs from the aforementioned work
in many levels. First, PAutoBotCatcher is a privacy-aware
botnet detection solution unlike all the work discussed above.
It protects the identities of hosts in the blockchain while keep-
ing an accurate solution. Second, PAutoBotCatcher does not
consider performing DDoS attacks as a detection criterion
unlike the work discussed in [37], [30], and [15]. Rather,
PAutoBotCatcher focuses on the C&C commands exchanged
among peers instead of network flows of the ongoing DDoS
attacks. This features allows PAutoBotCatcher to detect bot-
nets before they cause damages to a system unlike the other
discussed papers that detect botnets while they are perform-
ing the attacks. Third, PAutoBotCatcher focuses on P2P bot-
nets which were not discussed in the aforementioned con-
tributions. They focused only on centralized botnets while
PAutoBotCatcher focuses on decentralized botnets. Finally,
the work in [29], [30], and [15] did not discuss the scalabil-
ity aspect of the proposed solutions even if they take IoT as a
context. The work in [13] uses Ethereum, so the scalability
issue is related to the blockchain framework itself. However,
the work in [37] is similar to PAutoBotCatcher is this sense
because the authors provided a scalability analysis of their
solution. The authors in [37] exploit blockchain for infor-
mation sharing of possibly DDoS network flows between all
entities for independent analysis. So, each entity will judge
if the network flows represent a DDoS attack or not. PAuto-
BotCatcher performs the same operation of sharing network
flows but for all traffic. The work in [37] demonstrated that
blockchain can be scalable for such network flows analysis.
PAutoBotCatcher showed that detecting botnets from ana-
lyzing network flows in real-time using blockchain is feasi-
ble and scalable.

9. Conclusion and Future Work

This paper presented PAutoBotCatcher, a privacy pre-
serving blockchain-based solution for IoT botnet detection.
PAutoBotCatcher protects the identities of hosts by map-
ping their real identities to fake ones and introduces optimal
changes to the network structure to protect devices from re-
identification based on their links with other devices. In ad-
dition, PAutoBotCatcher runs in a real-time and incremental
manner to ensure an optimized detection process by leverag-
ing on caching each increment’s results. We tested our sys-
tem with a large dataset of almost 40 million network flows.
We have maintained the same accuracy claimed by Peer-
Hunter [47] which demonstrates that the minimal changes
implied by (k,1)-anonymization did not affect accuracy. In
addition, we have conducted performance experiments show-
ing that our system can support more than 15,000 nfps and
that blockchain adds an overhead of 1,168 seconds for the
considered testing scenario. This result allows us to con-
clude that blockchain can be suitable for real life use cases

where real-time data processing is needed.

PAutoBotCatcher can be extended in many different di-
rections. First, we plan to improve the current version by de-
signing a well developed synchronization system for detect-
ing transactions’ submission. In addition, we plan to exploit
smart contracts to perform incidents’ responses and mitiga-
tion in a systematic way. In addition, we plan to extend our
system by implementing a malware containment mechanism
that analyzes the scope of the infection and disconnects the
infected devices automatically.
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