
Out-of-distribution in Human Activity Recognition

Debaditya Roy1,Vangjush Komini1, Sarunas Girdzijauskas2

Abstract— With the growing interest of the research com-
munity in making deep learning (DL) robust and reliable,
detecting out-of-distribution (OOD) data has become critical.
Detecting OOD inputs during test/prediction allows the model
to account for discriminative features unknown to the model.
This capability increases the model’s reliability since this model
provides a class prediction solely at incoming data similar to
the training one. OOD detection is well established in computer
vision problems. However, it remains relatively under-explored
in other domains such as time series (i.e., Human Activity
Recognition (HAR)). Since uncertainty has been a critical driver
for OOD in vision-based models, the same component has
proven effective in time-series applications.

We plan to address the OOD detection problem in HAR
with time-series data in this work. To test the capability of the
proposed method, we define different types of OOD for HAR
that arise from realistic scenarios. We apply an ensemble-based
temporal learning framework that incorporates uncertainty and
detects OOD for the defined HAR workloads. In particular,
we extract OODs from popular benchmark HAR datasets
and use the framework to separate those OODs from the in-
distribution (ID) data. Across all the datasets, the ensemble
framework outperformed the traditional deep-learning method
(our baseline) on the OOD detection task.

I. INTRODUCTION

Deep learning (DL) methods for HAR are integral to
many ubiquitous applications. E.g., providing live coaching
feedback to an athlete based on mobile or on-body sensor
data requires an efficient HAR algorithm. The algorithm
predicts if the person is running, walking, jogging, etc., and
coaching feedback is generated based on that prediction. In
such applications, it is common to encounter unseen out-of-
distribution (OOD) activities with respect to known or in-
distribution (ID) activities. E.g., taking a rest while running
or performing some spontaneous activity such as taking a
phone call. The model does not know the above activities
(hence OOD). Therefore, it must differentiate the OOD data
from ID data in those scenarios. Failing to do so leads
to misclassification, affecting model reliability. However,
most state-of-the-art DL models used for HAR fail to do
so. The primary reason is that these models are trained
to discriminate between classes with high accuracy without
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considering the inherent uncertainty present in the data, and
the model [37].

This inability of traditional neural networks to accom-
modate the uncertainty compromises their robustness when
encountering OOD data. In other words, traditional neural
networks do not estimate the uncertainty for the prediction
in the test data. Therefore, these models assert an equal
confidence prediction for both OOD and ID test data.

Therefore, uncertainty estimation is an essential task for
detecting OODs. Unfortunately, OOD detection is an under-
explored task in the wearable sensor-based HAR domain.
Therefore, in this work, we try to empower traditional neural
networks at detecting OODs from time-series recordings of
human activities. To properly evaluate the OOD detection
capabilities, we first need to propose OOD data that tries
to expose the HAR models to unforeseen discriminative
features.

In addition to that, we discuss how an ensemble-based
temporal learning framework provides sufficient uncertainty
to separate OODs from ID data in HAR tasks.

We begin by defining activity-based OOD examples. Since
there can be a wide range of different activities, we need to
narrow down the space of activities such that the defined
OODs possess distinguishable features to the training data.
Hence we consider walking, running, jogging, standing,
sitting, walking upstairs, and walking downstairs activities.
Based on these activities, we define two categories of in-
distribution (ID) versus out-of-distribution (OOD) examples,
namely;

1) Dynamic activities (ID) versus Static activities (OOD):
In this set, the dynamic activities such as running,
walking, etc. are used to train the model (ID) and the
static activities such as standing, sitting are used as
OOD. This type of OOD can be encountered in real
life. E.g., static activities can be out-of-distribution in
an athletic or sporting scenario where predictions are
usually dynamic sporting activities. Detecting static
OODs in those scenarios can help reduce the misclas-
sification error of the model.

2) Known activities (ID) versus Unknown activities
(OOD): In this set, all but one activity are used to train
the model, and the left out activity is used as OOD.
This kind of scenario might occur in the real world,
where we do not know about certain activities relevant
to the HAR application. Detecting those activities as
OODs allows discovering a new class that can be
incorporated into the relevant activities.

To quantify the data uncertainty in this temporal setting,
we have used a method from our previous work [1] called



Deep time Ensembles (DTE). This method has two consec-
utive parts, i) extracting different temporal information by
sliding window lengths of different sizes on the raw time-
series input and ii) using that temporal information to train
multiple models for ensembling. Initially, it was proposed to
improve classification and calibration metrics for HAR tasks.
Since calibration is a direct reflection of data uncertainty, in
this work, we show that estimating uncertainty using DTE is
also effective for OOD detection. However, traditional neural
networks in HAR fail to detect OOD.

Traditional neural networks cannot internalize an en-
tire recorded activity. Instead, they truncate the time-series
recording to multiple temporal sequences extracted with the
same window size. The fixed-size window will implicitly
induce bias in the predictive response. In other words, the
model is missing out on the data variability (uncertainty)
since this requires a window size that corresponds to the
designated activity’s entire duration. Compounding different
predictive responses conveying incoherent biases induced by
the different window sizes can enhance the data’s inherent
(coherent) uncertainty. As a result, the prediction variance
reflects the data uncertainty, and the incoherent biases are
averaged out.

To attain coherent compounding within the DTE [1] setup,
an ensemble of models is trained with sequences extracted
with different window sizes. At inference time, the model’s
predictive responses are averaged out. Different window
sizes for extracting temporal sequence induces distinct bias
in each model during training. Combining the predictive
output from each model increases the uncertainty in data
and reduces the uncertainty from the window sizes. This
coherent compounding can also be explained through the
lens of softmax function. Since the learning in DTE is
distinct across models, so are their softmax outputs as well.
Eventually, these distinct outputs, when combined, convey
more uncertainty through a smoother softmax. In the case of
ID data, a smoother softmax increases the values for incorrect
classes predictions; nevertheless, it still reaches the necessary
consensus for the correct class. However, this consensus does
not hold for OOD data since the averaging would bring
the class predictions close to a uniform distribution. This
uniformity is a direct consequence of the harnessed data
uncertainty by combining ensemble models. Hence, allowing
it to estimate uncertainty in the OOD inputs with success.

Predictive Entropy
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Fig. 1: Predictive Entropy Distribution for ID and OOD.

This behavior can be visualized through the distribution
of the predictive entropy (c.f Figure 1). Since the training
process reduces the entropy of the predictive response in the

ID, the underlying assumption is that OOD samples maintain
a higher entropy of their predictive distribution. In the case
of ID data, the majority of the entropy coming out of the
ensemble will be around zero, whereas the OOD data will
push the entropy towards positive values.

Estimating the density shift of the entropy distribution for
OODs serves as the primary metric for their detection. This
shift can be estimated by measuring the overlapping area
under the curve between ID and OOD entropy distribution.
Therefore, Weitzman’s Measure [32] calculating the over-
lapping area under two functions could serve as an elegant
metric for the density shift. The lower the intersection area,
the better the OOD detection for the model and vice-versa.
This metric serves better than traditional divergence-based
metrics that compare two different distributions. Divergence-
based methods are harder to compute and can possess
numerical problems when the modality of two distributions
is not equal. In contrast, the Weitzman’s Measure would be
able to quickly tell that there is a noticeable overlap between
these distributions and hence will provide the correct OOD
score.

Deep time-ensemble [1] is tested on defined OODs
extracted from three popular sensor-based HAR datasets,
WISDM [33], UCI [34] and Motion-Sense [35]. It outper-
forms the baseline model [19] (a CNN architecture adopted
from previous work) on the OOD detection tasks on the
introduced metrics for the chosen datasets.

The main contribution of this paper is defining simple and
effective OODs for HAR with wearable time-series data and
using our previous ensemble-based temporal framework to
detect them. We also provide reasoning to explain why DTE
suits OOD detection tasks with temporal workloads. While a
few works address uncertainty estimation in HAR, to the best
of our knowledge, none of them address the OOD detection
paradigm.

The paper is organized as follows: Section II discusses
the Related Work. Following this, the Methods argues the
rationale behind using DTE for OOD detection. The initial
Experiment and Results are presented in Section IV, followed
by a Discussion and, Conclusion and Future Works section.

II. RELATED WORK

Three categories of work are discussed in this section:
The first one discusses the works in general activity recog-
nition, their evolution, and where this article resides in that
paradigm. The second group discusses uncertainty estimation
methods in deep-learning and compares how the method
used in this paper is different. The third group reviews an
intersection of both the above groups and compares this work
with its closest alternatives. Finally, a fourth class of related
work review on anomaly detection in the context of time-
series IoT environments.

A. On Activity Recognition

Activity recognition (AR) with wearable sensors is popu-
larly achieved using deep learning methods [7], [8], [9], [10].
Popular choices of deep-learning architectures include CNN



based on 1D convolution of time-series data [8], recurrent
neural-networks [15], autoencoder-based architectures [16].
However, these methods produce classification estimates
without addressing data or model uncertainty. Hence, they
react inefficiently with concept drift in the dataset and fail
on the OOD detection task. Deep time-ensemble method [1],
used in this paper, can adapt to any deep-learning architecture
and detect OOD successfully.

B. On Uncertainty Estimation

Estimating uncertainty in neural networks makes them
more robust and helps detect possible domain-shift in the
data. From a probabilistic viewpoint uncertainty aware neural
networks can be classified into Bayesian [17], [19], [20]
and,Frequentist [18], [21]. A popular application of Bayesian
formalization in neural networks is to learn a probability
distribution of the neural network weights that helps in
uncertainty estimation [17]. However, the complexity of
training a Bayesian neural network (for many applications)
and complex prior assumptions motivated the researchers
to explore probabilistic estimation using standard neural
networks. Ensemble-based methods have generated much
traction in recent years due to their ability to estimate uncer-
tainty while utilizing standard neural network architectures
[21], [23], [22]. Vyas et al. [18] formulated a loss function
that, when added to standard cross-entropy loss of a neural
network, increases the margin of separation between ID and
OOD samples of images. They train an ensemble of neural
networks in a self-supervised fashion with this composite
loss function. Lakshminarayanan et al. [21] establish that
through ensembling and adversarial training, deterministic
neural networks can be enforced to estimate uncertainty.
They show success in examples from computer-vision and
standard regression datasets.

However, the ensembling method proposed in our earlier
paper is designed to adapt time-series workloads that were
not explored in [18], [21]. Other works that addressed OOD
detection explicitly are [24], [25], [22]. A work by Hendrycks
et al. [24] showcases that although viewing softmax output
in isolation can be misleading to identify OOD and ID
samples, collecting the global statistics about the softmax of
ID samples can help differentiate ID and OOD samples. Lee
et al. [25] separate OOD and ID by training a GAN network,
with cross-entropy loss and a loss term based on distance
from a uniform distribution. Liang et al. [22] increased the
margin between ID and OOD samples by having temperature
scaled softmax outputs into the cross-entropy loss and small
perturbations in the training example.

Most of these methods discussed for uncertainty estima-
tion and OOD detection have been extensively tested and
benchmarked on computer vision problems and regression
tasks. However, they are a bit under-explored in the context
of time-series data, in particular HAR. This paper lever-
ages the ensemble-based uncertainty estimation concept and
demonstrates its capability for sensory recordings of time-
series data on HAR tasks.

C. A combination of both

While activity recognition is a well-established field, with
uncertainty estimation in deep learning not far behind, the
combination of both is relatively new. While Nweke et al.
[26] researched the usage of sensor-level ensemble stacking
and improved misclassification in HAR, they did not inves-
tigate the impact of OOD on their models. Hue et al. [27]
explore annotation uncertainty and mitigate the issue by a
soft-labeling strategy. They tackle an uncertainty problem in
activity recognition with RGB-D frames. It is comparatively
more manageable for the annotator to assign soft labels
to ambiguous activities with visual aid. Hence the model
gets more labelling assistance for uncertainty estimation. On
the other hand, deep time-ensemble [1] deals strictly with
wearable-sensor-based activity recognition, where it is more
complicated to annotate ambiguous labels from sensor data.
Akbar et al. [28], [29] approaches uncertainty in activity
recognition with generative modelling. Akbar et al. [29]
proposes a method that allows easy integration of new sensor
data with models trained with the older sensor data. The
closest match to this work is with [28], where the authors
propose a Bayesian CNN as a variational autoencoder [30]
for estimating the density of sensor signals. Later they use
the estimated density to sample and classify activities as
a downstream task with a classification layer and Monte-
Carlo dropout [19]. While it is an elegant way to estimate
uncertainty, the authors [28] does not explicitly explore the
OOD detection ability. The used deep time-ensemble [1]
is potentially more straightforward (because of the non-
Bayesian approach) and is used for detecting OODs in HAR
tasks.

D. On Anomaly Detection

Anomaly detection with machine learning is a problem
where the models try to identify anomalous classes, i.e.
classes which are outlier with respect to the classes the model
has been trained on. Intuitively, out-of-distribution data on
other hand might be an outlier class or simply a new class
that has not been encountered before. The requirement of an
ood class (outlier or not) must be that it will be drawn from a
distribution that is statistically different from the training data
distribution. While, there is not a strict separation between
the two, but in our understanding anomaly detection is
a stricter variant of of out-of-distribution detection. Some
applications of ood detection might deal with outlier classes
and hence it is important to look at the existing state-of-the-
art in anomaly detection.

In particular anomaly detection using machine learning
has garnered enough attention in the domain of IoT and
smart-home [38]. Mining time-series stream data [39], user-
behaviour [40] has provided security solutions. Detecting
medical events [41], [42] is also another important use-case
in sensor driven anomaly detection problem. However, most
of the existing anomaly detection techniques using machine
learning demand exposure to few examples of anomalous
data. This might be restrictive in certain context. Using our
proposed out-of-distribution (OOD) in anomaly detection



task we can bypass the requirement to have some anomalous
training data (see Appendix VI-A) for more insights on this.

III. METHODS

A. Integrity of uncertainty in deep learning

Harvesting the necessary uncertainty presented in the data
has proven beneficiary in increasing the awareness of a
machine learning model toward OOD test data. In a deep
learning classifier, usually, the softmax layer accommodates
some stochastic behaviour of the data. The rest of the layers
are dedicated to generalizing the representative features.
On the one hand, the high number of such components
(layers) makes a classifier more capable of achieving high
predictive accuracy. On the other hand, the single last layer
consolidates uncertainty from the data to a much lesser
extent than needed. Based on the bias-variance trade-off,
the more uncertainty incorporated in the model, the lesser
unwanted bias in the final prediction. Thus, stochasticity
must be included in the layers before the softmax to make the
model less deterministic. An ensemble is a popular approach
for delivering such behaviour. The multiple models in the
ensemble simulate the behaviour of such stochastic layers.

B. Problem Setup

t1

t2 t2 t2

t1

X
Dt1

Dt2

X    Input temporal sequence

ti    Window sizes

Dti  Extracted temporal sequence sets  

Fig. 2: Representing a temporal-sequence X as collection
of different temporal sequences by using different window-
sizes.

A temporal sequence X is obtained by sliding a particular
window size over the raw time-series data. The goal is to
predict the activity based on the observations defined by
X . This temporal sequence X is fed to a neural network
pθ(y|X) parameterized by θ to produce a softmax output
y. The softmax y is the probabilistic output provided by a
model, and the index of the highest value in y represents the
index of the predicted class.

Temporal sequence, X , can be re-represented as a combi-
nation of multiple temporal sequences extracted with differ-
ent window sizes. As shown in Figure 2, X is represented
as temporal sequence sets Dt1 and Dt2 , that contains mul-
tiple temporal sequences. These temporal sequence sets are
extracted from the temporal sequence X by sliding window

sizes t1 and t2. For more details of this setup, we refer to
our previous work [1].

C. Deep time ensembles for uncertainty estimation

Y =
1

M

M∑
i=1

pθi(yi|X) (1)

Time series recordings have the structural information en-
coded into their temporal order. Namely, whenever a particu-
lar trend is present in a time series, it will persist throughout
consecutive recorded values. The data fed into the model
is strictly ordered by the acquisition time. The scope of
exploration depends explicitly on the number of consec-
utive values fed into the model. Traditionally, in activity
recognition problems, this is achieved by extracting data (a
temporal sequence) using a fixed window size and feeding
it to the model. Thus, extracting the temporal information is
highly dependent on the window size of sensor readings. A
naive ensembling technique that trains multiple models using
identical temporal sequences obtained by using the same
window size is sub-optimal. The equation of output from
such ensemble is given by eqn 1. Having the same window
size would extract the same temporal sequence X , that is
fed to the M models in the ensemble. It conveys the same
information to each model in the ensemble. The only source
of randomness, in this case, is obtained through converged
weight values θi for different trained models pθi . Even then,
training from the same temporal sequences would mean that
the converged weights θi are similar. Meaning that all the
models would produce similar predictive trends, limiting the
randomness. Hence, the averaging of the ensemble at the
output does not harness sufficient uncertainty. Bootstrapping
different data samples might mitigate this drawback, and
DTE [1] offers a different form of bootstrapping fit for time-
series data.

Y =
1

M

M∑
i=1

pθi(yi|Dti) (2)

In DTE, bootstrapping is achieved by representing the same
input differently, i.e., by extracting different temporal se-
quences from same data (c.f Figure 2) with different window
sizes. Different temporal sequences are used to train each
model of the ensemble. Similar to experience replay [36],
having a varying window size increases the decorrelation
between the temporal sequences and thus increases the em-
pirical variance that is exposed to the models. Furthermore,
temporal sequences of different window sizes boost the
ability to explore higher-order dependencies in time series.
As a result of this, it is possible to broaden the explo-
ration capacity of the model by observing more structural
information. The equation of output from DTE is shown
in eqn 2. In the equation, the term Dti represents sets
of temporal sequences that can be extracted from a single
temporal sequence X . Figure 2 demonstrates a simple ex-
ample showing how two set of temporal sequences (Dt1 and
Dt2 ) are extracted from X using windows t1 and t2. Thus,



without losing any information, each model of DTE learns a
different temporal dimension of the time-series classification
problem. It allows them to produce distinct outputs and
model different uncertainty trends in the data. This increases
the overall randomness of the process sufficiently towards
efficient uncertainty estimation by averaging the softmax.

On top of the softmax averaging, in the combination step
of ensembling, DTE also features nested averaging. This
is evident from Figure 2. When temporal sequence X is
represented as a collection of temporal-sequences Dt1 and
fed to a model in the ensemble, two temporal sequences are
sent to the model. Hence, the model produces two outputs for
two temporal sequences. Since a single prediction is required
from input X , the outputs are averaged. Similarly, for Dt2 ,
three predictions are averaged by the model to produce a
single response against X . A more detailed explanation of
this process can be found in [1]. The uncertainty obtained
through the nested averaging adds to the uncertainty obtained
in the ensemble combination step. The total accumulated
uncertainty results in better OOD detection.

D. Density of entropies

The coherent uncertainty of the model is mainly a conse-
quence of the incompatible prior assumption made for the
model. This type of uncertainty persists through the training
process for the given data. The incoherent uncertainty of
the model is then a direct consequence of the imperfect
calibration of the hyperparameter of the model. This type of
uncertainty is generally misleading as it is just a subjective
reflection of the hyperparameters and clutters the coherent
uncertainty. An ensemble can suppress the incoherent un-
certainty, eventually decluttering the model uncertainty. The
predictive output comes as a normalized distribution degree
of belief, also known as softmax output (cf. Eqn 3).

P (xi) =
exi∑
j e

xj
,∀i ∈ {1, ..., N} (3)

The overall uncertainty represented by the softmax is then
compressed into a single empirical value using the entropy.
The entropy weights the softmax output by the amount of
information that a particular output possesses (cf. Eqn 4). The
more uniform the predictive output is, the more uncertain the
model is, resulting in a higher entropy value.

H(P (xi)) =
∑
i

P (xi) ∗ log{P (xi)} (4)

Using a collection of entropies that fully characterizes
the ensemble represents the total amount of uncertainty
produced by the model for a given test data. The model
is highly confident whenever entropies are close to zero,
and the uncertainty is relatively low. These cases are mostly
related to ID data, where the model has been heavily trained.
Whenever there are OOD data, the ensemble produces a
frequent amount of high entropy values, given that predictive
outputs are, on average, distributed at equal probabilities.
Furthermore, having a density estimation from the collection

of entropy values is then computationally attractive to judge
the overall behaviour in an ensemble.

E. Density-shift estimation

wm =

∫
min{Density1(x), Density2(x)}dx (5)

The final output of an ensemble is a distribution of entropy
values, and assessing the discrepancy between two different
distributions in the context of density shift is not as trivial.
OOD distribution entropies are expected to shift their density
mass towards high positive values, whereas ID entropies
remain around zero. A measure that fits the need the most
should target the density shift and put lower importance on
the shape of distributions. Weitzman measure (cf. Eqn 5)
quantifies this shift quite elegantly by measuring the amount
of intersecting area between two distributions. The further
apart from one another two distributions are, the lower the
Weitzman measure (wm) is and the better the OOD detection
capability of the model.

IV. EXPERIMENT AND RESULTS

We have used a CNN architecture adapted from Ignatov
et al. [8] as the baseline model and ensembled the same
architecture using DTE. Since, DTE [1] also compared with
Ignatov et al. [8] using the same CNN architecture, the
configurations of the window-sizes and hyper-parameters
were directly adopted from [1]. The goal of the experiments
was to detect OODs extracted from standard HAR datasets.
For classification results, we would refer to our previous
work [1].

A. Datasets

We have primarily defined OODs based on activities from
WISDM [33], UCI [34] and Motion-Sense [35] dataset.
Below we discuss the datasets and how they are used to
formulate ID and OOD data.

1) WISDM dataset: : The WISDM dataset consists of ac-
celerometer recordings from six activities, namely, walking,
jogging, upstairs, downstairs, sitting, standing obtained from
36 subjects. The baseline model is trained on 200 timesteps
indicating 10 seconds of time-series data [8], [1]. The DTE
is trained on time-steps ranging from 200 to 100 [1]. The
WISDM dataset is divided based on the activities. Dynamic
activities walking, jogging, upstairs, downstairs form the
Dynamic WISDM dataset, and static activities, i.e. sitting and
standing forms the Static WISDM. Dynamic WISDM is used
for training the models. Static WISDM is used as an OOD
set.

2) UCI Dataset:: The UCI dataset consists of 6 activities
lying, standing, sitting, downstairs, upstairs, and walking
recorded from 30 subjects. The modality of the sensor
is a triaxial accelerometer and gyroscope resulting in 6
dimensions. It is used as ID data for our experiments. The
baseline model is trained on 256 steps of UCI dataset ([8],
[1]. DTE trains 5 models between the range of 128 to 256
timesteps [1].



3) Motion-sense OOD dataset[35]: : This dataset consists
of accelerometer and gyroscope readings from six activi-
ties, downstairs, upstairs, sitting, standing, jogging, walking.
Since the UCI dataset does not have an instance of jogging,
the input signal(accelerometer and gyroscope) for jogging is
used as an OOD input to the models trained on the UCI
dataset.

y

y

y

y y

y

Fig. 3: Comparing OOD detection of a single model against
Deep Time Ensembles. The training dataset consist dynamic
activities from WISDM and the OODs are the static activi-
ties.

UCI Dataset

Fig. 4: Comparing OOD detection of a single model against
Deep Time Ensembles. The training dataset consist dynamic
activities from UCI and the OOD is Jogging from Motion-
Sense dataset (other OOD in image) and, random Gaussian
noise.

B. Uncertainty estimation: OOD vs ID inputs
Based on the definitions of OOD in the Introduction, two

experiments were formulated.
• Dynamic WISDM as training and Static WISDM as

OOD.
• Training on full UCI dataset and using jogging from

Motion-Sense dataset as OOD.
The models are evaluated for uncertainty estimation by
probing them with OOD inputs. In addition to probing the
UCI dataset with OODs from the Motion Sense dataset, we
also probe it with a random Gaussian noise drawn far from
the original training data distribution (µ = 5, σ2 = 6).

Predictive entropy distribution of the output is a central
concept for visualizing uncertainty estimation in classifica-
tion tasks. When tested with OOD examples, a well-behaved

TABLE I: Weitzman measure for different types of OOD -
WISDM Dynamic

Model-type WISDM static OOD
Ensemble 0.16

Non-ensemble 0.38

TABLE II: Weitzman measure for different types of OOD -
UCI Dataset

Model-type Gaussian-OOD Motion-sense OOD
Ensemble 0.10 0.29

Non-ensemble 0.43 0.82

model provides uncertain or low-confidence outputs. This
essentially translates to higher predictive entropy for the
outputs. However, for the ID samples, the confidence is
higher, and hence predictive entropy of the output is lower.
Thus an ideal model gives low predictive entropy for ID
samples and higher predictive entropy for OOD samples. In
terms of Weitzman measure used to evaluate the model, a
lower score indicates better OOD detection.

The hyperparameters and model architecture are presented
in Appendix B. Next, we discuss the results of the experi-
ments.

1) Probing Dynamic WISDM dataset with OODs: : The
models trained on Dynamic WISDM dataset are probed with
Static WISDM dataset as OOD. For the baseline model,
the predictive entropy distribution resides in a low-value
region with a mean around 0 for both ID and OOD sets
3. DTE reacts similarly for the ID test data. However, for
the OOD, i.e., static data, the predictive entropy distribution
of the outputs shifts further to the right. The clear margin
of separation in entropy distribution between ID and OOD
data for DTE reflects in the Weitzman measure metric as
well. The Weitzman measure is 2.3 times lower for the Deep
time-ensemble compared to the baseline model.

2) Probing UCI dataset with OODs: : The expected
behaviour is well-captured in the experiments, as showcased
by Figure 4. The ID test inputs to the baseline model
produces low entropy values as expected. However, even
for OOD datasets(Gaussian and Motion-sense OOD) the
predictive entropy resides in the low-value region. It signifies
overconfident misclassified outputs by the baseline.

DTE, on the other hand, produces high entropy values
for OOD inputs and low-entropy values for the ID inputs.
There exist a clear margin of separation between the ID
and OOD datasets for DTE trained models. The above result
is also quantified by the Weitzman measure, as shown in
Table II. The Weitzman measure shows a 4-fold decrease
for the DTE compared to the baseline, for Gaussian OOD
and 2.5 fold decrease for Motion-sense OOD dataset. Lower
Weitzman measure indicates lesser overlap between ID and
OOD samples and hence a better margin of separation.



Fig. 5: Confidence versus Accuracy curve: Comparison
among baseline model and DTE on WISDM dataset. OOD
in this experiment is Static WISDM.

Fig. 6: Confidence versus Accuracy curve: Comparison
among baseline model and DTE on UCI dataset. OOD in
this experiment is Jogging from Motion-Sense and random
Gaussian noise.

V. DISCUSSION

A. On OOD detection

A couple of interesting observations can be made from the
experiments.

• Firstly, it is clear from the Weitzman measure of dif-
ferent experiments that the random Gaussian noise is
more out-of-distribution compared to the real datasets
(see Figure 6). This behavior is expected because the
random Gaussian noise was deliberately drawn away
from the training distribution. It served as a first step
to show that DTE could pull apart the Gaussian noise
successfully as OOD from the ID samples. However, the
single model failed to do so even though the Gaussian
noise values do not contain any discriminative features
that the model is trained on. As a result, the single
model misclassified the random data and assigned a
high score to one of the classes in the softmax output.

In DTE however, even though individual models assign
a high score (in softmax) to one of the classes, not
all of them assign a high score to the same class.
Thus, through averaging, the overall softmax output of
the ensemble is smoothed to be more uniform. This
uniformity translates to a higher entropy value for the
predictive response, differentiating the OOD from ID.

• When jogging activity from Motion-sense dataset is
used as an OOD, there is a small overlap in predictive
entropy distribution even for DTE (see Figure 4). The
similarity of jogging with some ID activities such as
running and walking might be why. The discriminative
features that are extracted by each model in DTE are not
sophisticated enough to differentiate between jogging
and some of the ID activities. There is a consensus
among the models on the predicted class for some
OOD data. Hence low uncertainty is obtained through
model averaging. Thus, some portion of the realistic
OOD dataset may be detected as ID, which explains
the overlap. One possible way to mitigate this is by
adding more layers to each model for improved feature
extraction for each class. However, the models risk
overfitting in the classification task. Since DTE is also
optimized to obtain better predictions, overfitting each
model would oppose that.

• All the images (Figure 3 and Figure 4) with DTE
shows an interesting feature. There is a bump in the
predictive entropy distribution on the right-hand side,
even for ID samples. Since each model in DTE pro-
duces a distinct output, there are some cases where the
uncertainty in ID data does not allow for a consensus
for the majority class in the softmax output. In those
cases, the randomness of the model increases during
the averaging process. Intuitively, these can be some
borderline examples of ID data that are corrupted by
noise or incorrect annotation.

This experiment validates two important hypotheses that
were proposed earlier.

1) Single deep learning models for the HAR tasks pro-
duce misclassifications in the face of OOD data be-
cause of their inability to capture uncertainty. This
property may guide users towards wrong interpretation
and make the models unreliable.

2) Deep time-ensemble can estimate the uncertainty as-
sociated with the OOD samples and establish a clear
margin of separation. A property desired for robustness
and reliability.

B. Accuracy vs Confidence

One way of analyzing the uncertainty estimation ability
of a model is by looking at the accuracy vs. confidence
curve. Given a model prediction p(y|x) for k classes, the
predicted label is given as ytrue = argmax(p(y|x)) out
of k classes. For such an output the confidence is defined
as conf = max(p(y|x)). In this experiment, for all the
test samples (both ID and OOD), the confidence values are
extracted. Then based on a selected confidence threshold,



examples having a value greater than the threshold are
retained. The model accuracy is calculated for the retained
samples. A general intuition suggests that for an ideal model,
lower confidence should also indicate low accuracy and vice-
versa. Because for such a model, the under-confident samples
bring down the model accuracy through misclassifications.
Once those samples are rejected, the left-outs represent the
confident predictions. These predictions contribute positively
to the accuracy. For this experiment, OOD and ID examples
are combined in an equal proportion. In Figure 5 and Figure
6, the images indicates the accuracy vs confidence curve
for all the models on all the datasets and respective OOD
sets. As seen from the figure, the baseline model fails to
produce high accuracy even at high confidence thresholds for
all the datasets. The baseline model makes high-confidence
predictions even for the OOD, so at higher confidence
thresholds, they contribute negatively to the accuracy through
misclassifications. On the other hand, Deep time-ensembles
are more robust in this aspect. The majority of the OOD
samples are rejected at low confidence thresholds. Hence,
correctly classified samples are retained at high-confidence
points, improving the accuracy.

VI. CONCLUSION AND FUTURE WORK

In this work, we set out to define and detect simple yet
effective out-of-distribution (OOD) data for Human Activity
Recognition (HAR) tasks. In particular, HAR problems with
time-series data originating from wearable sensors. The
defined OODs are usually encountered in realistic scenarios
where HAR models are deployed. Although OOD detection
is explored in the domain of computer vision and specific
regression tasks, to the best of our knowledge, there is no
previous work that defines OODs for time-series workloads
originating in the HAR domain. To detect the proposed
OODs, we have adopted an ensemble-based framework
called Deep Time Ensembles (DTE) that takes the temporality
of the workload into account. In particular, we have used
a baseline convolutional neural architecture that yielded
promising results in HAR tasks from [8] and ensembled it
using DTE. Our experiments on OOD data extracted from
popular HAR datasets indicate that DTE outperforms the
baseline model in detecting OODs. This nature will allow
DTE to be incorporated for modelling robust and reliable
solutions in HAR. It opens up exciting research avenues to
be explored in the future, e.g., incorporating OOD detection
with DTE in safety-critical HAR applications. Initial results
and a possible architecture of one such application, Elderly
Fall Detection is presented in Appendix A. In our use-
case with Fall Detection, we tried to show how uncertainty
estimation could detect falls with fewer data.

While this work delves into some initial and simple OOD
definitions for the HAR task, more interesting OODs for
time-series data could be defined in the future. E.g., In-
distribution (ID) data originating from periodic activities
versus OOD originating from aperiodic activities. Also,
using OOD metrics to measure uncertainty arising from
IoT devices could lead to better fine-tuning and calibration.

Although ensembling captures stochasticity, the inherent
complexity of training an ensemble can still be an issue.
However, progress in distilling the ensemble models [23]
is a direction that could be explored for the sensor data
domain. Apart from extensive testing on more fall detection
datasets, OOD detection and the proposed metrics can find
applicability in other domains such as sports, mobile sensing,
etc., where time-series data from sensors play a vital role.
The research presented in the paper defines interesting OODs
and successfully demonstrates that OOD detection can be
used for HAR tasks with a simple yet effective method.
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APPENDIX

A. Elderly Fall Detection
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Fig. 7: Fall Detection Usecase
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Fig. 8: Predictive Entropy Fall Detection Use-case

Elderly fall detection being a vital application in geriatric
care is a use-case where the application of Deep time-
ensemble showed promising outcomes with lesser data.

The traditional fall detection task involves training DL
models on ADL activities along and simulated/real-falls. The
problem with this approach is that to detect falls reliably;
the model needs to learn the fall patterns from the training
dataset. This calls for an extensive and well-curated fall
dataset with examples of all the different types of falls. The
highly stochastic nature of the falling down activity and the
corresponding wearable signal pattern it can produce makes
this problematic inspiring an exploration towards alternative
directions.



TABLE III: Implementational details for results

Datasets UCI WISDM
Ensemble size 6 6

Timesteps [128,100,80,70,60,50] [200,180,160,140,120,100]
Train/test split 78/22 78/22

Convolution Filter 196 196
Filter Size 12 12

Dense Layer Size 1024 1024
Batch Size 256 256

Learning Rate 1e-4 1e-4
Optimizer ADAM ADAM
Dropout 0.15 0.15

Based on the primary proposition of this paper, a new fall
detection system is proposed where the falls are detected as
OOD. The process is explained in Figure 7. The proposed
system is trained only with non-fall activities from a standard
fall dataset using the Deep time-ensemble method. Thus
when probed with Falling samples, it produces a higher
predictive entropy at the output, detecting it as a fall. Fur-
thermore, a threshold can be drawn based on the confidence
of the predictions from the ensemble, that rejects samples
below the threshold as probable falls. Not only this system
allows to raise alarms and have a human-in-the-loop scenario
for emergency geriatric care services but also it drastically
reduces the amount of training data required to train a fall
detection system. An experiment is performed using data
from the Sisfall dataset that shows, using only 10 out of 30
subjects, and 6 out of 17 ADL types, a system that detects
falls as OOD could be formulated.

The Weitzman measure metric decreases by a factor 3.75
using Deep time-ensemble compared to the baseline model.
This behaviour can also be inferred by looking at Figure 8,
where the clear separation of OOD and ID predictive entropy
values are visible using the proposed training method. Also
the classification accuracy is up by 0.6 for Deep time-
ensembles.

The purpose of this experiment was to show that even
with less data, a good result is achieved in the fall detection
task. Better architecture selection, model composition and
training focused towards fall detection would further improve
the system in terms of OOD detection and classification,
which is primarily is major work for the future.

B. Convolution Architecture and Implementation Details

Fig. 9: Convolution Architecture used for modelling baseline
and DTE

In this section we present the convolution architecture in
Figure 9 and the model hyper-parameters in Table III.


