MalCon: A Blockchain-based Malware Containment Framework for

Internet of Things*

Ahmed Lekssays*, Barbara Carminati and Elena Ferrari

DiSTA, University of Insubria, Varese, Italy

ARTICLE INFO

Keywords:

Malware Containment
Blockchain

Internet of Things
Security

Abstract

IoT devices have become a primary medium for malware (e.g., botnets) to launch Distributed Denial
of Service (DDoS) attacks. Such malware exploit low-security measures in IoT devices to spread in
networks and recruit new victims. Thus, there is a need for malware countermeasures that consider
both the security and operability of the network. Indeed, some IoT devices might run critical processes
that do not tolerate interruptions.

This paper proposes MALCON, a blockchain-based malware containment framework for IoT. It
aims to stop malware from spreading in a network by a set of containment strategies encoded into
smart contracts to be executed by the infected devices. Moreover, MALCON provides a monitoring
service that ensures trustworthy behavior in the network and reports to the system administrator any
fraudulent activity of the monitored devices. MALCON was tested extensively with real-life malware
and use cases. It quickly and drastically reduces the number of infected devices in a network, even in
an extreme case of a fully connected network.

1. Introduction

IoT devices have been emerging drastically in the last
few years. Due to their low computational power, they can-
not run sophisticated security solutions, leading to weaker
security guarantees. In addition, they usually adopt weak
passwords (e.g., default vendors’ passwords) and operate
with unencrypted traffic.! As a result, attackers may inject
different type of malware (e.g., ransomware, trojans, botnets,
spyware, viruses) easily to compromise internal networks or
attack external targets [3].

According to the NIST SP 800-83 Malware Incident
Response guidelines [14], one of the leading guidelines
in malware incident response, there are four main steps
to contrast malware: preparation, detection and analysis,
containment and eradication, and recovery. While many
works have addressed the issue of IoT malware detection
and analysis, a few have focused on malware containment.
Malware containment aims at limiting the spread of malware
in networks. To this end, the need for effective and efficient
containment strategies arises. Given the spreading speed
and the criticality of the potential damages, containment
strategies need to: i) be tailored to the attacking malware
on the basis of its characteristics, ii) ensure the operability
of the network even under a malware attack, and iii) be

*This work has received funding from the Marie Sklodowska-Curie
Innovative Training Network Real-time Analytics for Internet of Sports
(RAIS) supported by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 813162. The content
of this paper reflects only the authors’ view and the Agency and the
Commission are not responsible for any use that may be made of the
information it contains.

*Corresponding author

B alekssays@uninsubria.it (A. Lekssays)
ORCID(S): 0000-0001-7511-2910 (A. Lekssays); 0000-0001-7511-2910
(B. Carminati); 0000-0001-7511-2910 (E. Ferrari)

Uhttps://www.enisa.europa.eu/publications/baseline-security-

recommendations-for-iot

autonomously deployed to reduce the delay that the human
interaction can cause.

Additionally, since IoT networks are heterogeneous and
can involve several organizations, the containment process
must be collaborative and based on threat information shar-
ing.? Exchanging malware information increases organiza-
tions’ resistance to such attacks since they can implement
proactive strategies against the malware before they get
attacked. However, organizations do not necessarily trust
each other. So, an effective containment solution should
ensure the traceability and integrity of the implemented
containment strategies.

In this paper, to cope with the abovementioned require-
ments, we propose MALCON, a blockchain-based malware
containment solution for IoT devices. MALCON is based
on containment strategies deployed through smart contracts.
These strategies are tailored for each specific malware based
on its characteristics while considering the system’s oper-
ability. In addition, MALCON keeps an honest behavior in
the system by verifying the execution of suggested strategies
after any malware infection. We leverage the blockchain to
ensure traceability and integrity. Containment actions done
by a device are recorded in the blockchain to ensure account-
ability. In addition, since information about malware and
adopted containment strategies are shared in the blockchain,
the proposed solution ensures that they are tamper-resistant.
Moreover, blockchain provides the tools to run smart con-
tracts as autonomous programs. So, the proposed contain-
ment actions are guaranteed to follow the procedure encoded
in the smart contract without the need for human interaction.
Containment strategies are selected by taking into account
malware characteristics (e.g., malicious actions, propagation

2See for instance the EU Concordia DDos clearing house project
https://www.concordia-h2020.eu/news/press-release-ddos-clearing-house-
designated-high-potential-innovation-by-european-commission/.

Ahmed Lekssays et al.: Preprint submitted to Elsevier

Page 1 of 12

MalCon: A Blockchain-based Malware Containment Framework for Internet of Things

scheme, etc.) and processes’ characteristics, such as their
tolerance to rebooting and their replicas’ availability.

MALCON is designed for a trustless setting, where the
trust of involved parties is not needed for the normal oper-
ation of the system. As a result, MALCON relies on smart
contracts to propose containment actions. The key advantage
of using smart contracts in MALCON is that they enable
trustless collaboration between consortium members (i.e.,
organizations). Unlike a centralized solution that requires
a central entity to be trusted, a blockchain-based solution
with smart contracts can operate in a decentralized and
transparent manner, with no need for trusted intermediaries.
This is because smart contracts execute automatically and
transparently, with the terms and conditions of the contract
encoded on the blockchain, and enforced by the underlying
consensus mechanism. Overall, MALCON provides a secure
and efficient way for consortium members to collaborate
on threat intelligence sharing to automate the mitigation
actions, without the need for intermediaries or a central
entity to be trusted.

MALCON is, to the best of our knowledge, the first
approach that addresses malware containment in IoT lever-
aging blockchain. The issue of malware containment in IoT
was not addressed extensively in the literature, even if IoT
malware are having exponential growth.

Indeed, most previous proposals targeting [oT deal with
malware detection rather than containment. Malware con-
tainment is addressed by [7], but with a straightforward
approach of always disconnecting a device from the network
if the proposed malware detection model predicts that the
device is infected. The only approach we are aware of
leveraging on blockchain for malware containment is [12],
but it targets malware containment in the cloud. They used
a graph analytics approach to predict possible infections,
and leverage smart contacts that involve different parties
to decide if a possible infected virtual machine should be
disconnected from the network or not. The involved parties,
namely the cloud provider, security officer, compliance offi-
cer, auditor, network admin, and solution admin, give their
opinion regarding shutting down a virtual machine, depend-
ing on many factors, such as service-level agreements, the
danger of the attack, the pricing that the action will cost, etc.
MALCON differs from these solutions at many levels. First,
MALCON targets a heterogeneous IoT setting where different
organizations collaborate to defend against malware threats.
The work in [12] focuses on containing malware affecting
virtual machines in the cloud. Second, MALCON takes into
consideration both the operability and security of infected
devices, instead of only shutting down a device once it is
infected like [12, 7]. MALCON smart contracts encode the
containment actions that should be taken without the need
for human intervention. Moreover, MALCON is available
as open source’ and was tested extensively in different
IoT settings, whereas the work in [12] provided only the
theoretical background without real-life experiments.

3MALCON source code is available at https://github.com/lekssays/
malcon

The remainder of this paper is organized as follows. Sec-
tion 2 presents MALCON building blocks, whereas Section
3 discusses the details of MALCON implementation. Section
4 analyses the security of the proposed approach. Section 5
presents experimental results, whereas Section 6 concludes
the paper.

2. Containment Process

MALCON containment consists of three sequential phases:
emergency, healing, and strategies’ execution verification,
which are all performed on the blockchain (see Section 3 for
more details). Before describing the containment phases, we
need to introduce some preliminary concepts.

2.1. Basic Concepts

Device. A device (or a peer) is a computer that runs
processes and is part of a network. A device could either
just execute a process related to the Iol' environment, or it
could also have the privilege to participate in the blockchain
consensus process. We refer to this latter as a privileged
device.

Process. A process is the execution of a program on a
device. In the context of MALCON, we characterize pro-
cess p by two main features. The first is the replication
availability, which indicates the existence of execution of
the same program on another device. The second is the
rebooting tolerance, which indicates whether p can be re-
booted without causing any interruption to the service it
provides. Therefore, we model a process p running on a
device D as a pair p = (Rep, RBT'), where Rep € {yes, no}
and RBT € {yes, no} refer to replication availability and
rebooting tolerance, respectively.

Each process has a priority, that is assigned by the MAL-
CoN smart contract based on process features, as follows:

e Priority 1 (Highest priority): This priority is assigned
to processes that do not have a replica and do not
tolerate rebooting.

e Priority 2: This priority is assigned to processes that
do not have a replica but tolerate rebooting.

e Priority 3 (Lowest priority): This priority is assigned
to processes that have a replica.

For each device, we consider the most critical process,
that is, the process with the highest priority*. The charac-
teristics of this process will play a crucial role in selecting
the proper containment strategies (see Section 2.2 for more
details).

Malicious actions. These are operations that malware
could perform in an infected device. By reviewing different
surveys on various malware families [10, 15, 4], we consider
as possible malicious actions the following ones: encrypt
files (EF), delete files (DLF), consume resources (CR), mon-
itor systems (M), send traffic (ST), and open ports (OP).

4If multiple processes exist with the highest priority, we randomly
select one of them.
SMALCON can be easily adapted to consider additional actions.

Ahmed Lekssays et al.: Preprint submitted to Elsevier

Page 2 of 12

https://github.com/lekssays/malcon
https://github.com/lekssays/malcon

MalCon: A Blockchain-based Malware Containment Framework for Internet of Things

Table 1
Mitigation actions executed by the infected peers

Symbol | Description Impact on operability
FRMT | Formatting High

RBT Rebooting Medium

DLF Deleting malware files Low

CCP Closing and changing ports | Low

Malware. We model a malware m as a tuple (m,, PRP,
ports), where m, is the set of malicious actions that m can
perform as defined above, PRP € {yes, no} refers to the
ability of the malware to propagate in the network, and ports
refer to the ports that m uses for propagation. For example,
we can represent Mirai [3], one of the major IoT botnets, as
follows: ({ST,OP,CR}, yes, {23, 2323}), because it sends
traffic, it opens ports, and it consumes resources (when
attacking a target). In addition, it propagates through Telnet
with ports 23 and 2323.

Strategy. A strategy defines a set of actions to be per-
formed by IoT devices. In MALCON, we have two types
of strategies: emergency and healing, corresponding to the
first two stages of MALCON. For determining the actions
to be considered in each phase, we have done an extensive
literature review [2, 9, 11], as well as an analysis of leading
industrial threat databases, such as TrendMicro® and Kasper-
sky.” According to our analysis, in this paper, we consider
the actions shown in Table 1. These actions are encoded into
a smart contract (cfr. Section ?? for more details). It is worth
mentioning that the set of actions adopted in MALCON can
be easily changed in case new types of malware arise. Also, a
different set of actions can be easily supported, depending on
the different settings (e.g, operating systems) of the involved
IoT devices.

2.2. Emergency and Healing Strategies

Once a malware is detected on a device, the infected
device has to submit its information to the blockchain. This
information is analyzed by the blockchain (e.g., a smart
contract) that, in case the detected malware has propagation
capabilities, triggers the emergency phase. This aims to send
to all devices in the network a command to execute the
closing and changing ports (CCP) action with the aim of
closing the ports that a malware uses. In case a service uses
the same port, it changes it to another random port. For
example, if a device D is infected with malware M irai, the
strategy will suggest closing and changing ports (e.g., 23,
2323) that Mirai is using for propagation and stopping all
connections with the infected device D.

The second phase is the healing phase, which aims at
eradicating the malware’s malicious actions with the lowest
possible impact on the system’s operability. To this end, we
select a healing strategy based on both malware and process
features. In the following, we describe the decision process.

Shttps://www. trendmicro.com/vinfo/us/threat-encyclopedia/
7https://threats.kaspersky.com

Malware-based decision. The first dimension that MAL-
CON considers to select the proper mitigation actions is the
malicious actions the malware could perform, as well as
its propagation capability. Based on our literature review,
we identified a set of mitigation actions for each malware
malicious action. Table 2 summarizes the healing actions
that should be taken by considering only malware charac-
teristics. These are defined in terms of malicious actions
(see Section 2.1) the malware can perform (in columns)
and its propagation capability (in rows). For instance, in the
case of a malware that monitors a device and has propaga-
tion capabilities (i.e., cell (1,4)), the suggested strategy is
{CCP,DLF}, that is, deleting malware files and closing
and changing ports it uses.

In the case of malware performing multiple malicious
actions, as healing actions, we select the union of mitigation
actions corresponding to each malware malicious action.
For example, let us consider a malware m; = {{DLF,
CR},no}, that deletes files, consumes resources, and does
not have propagation capabilities. The strategy derived from
Table 2 for m; is the union of cells (2,2) and (2,3), which
results in {DLF,RBT}. This implies that the returned
actions are: deleting the malicious file and rebooting the
device.

Process-based decision. The key idea of the proposed
healing strategy is to select the actions able to eradicate the
malware (i.e., malware-based decision) while, at the same
time, preserving as much as possible the system’s oper-
ability. This mainly depends on the process features (aka,
availability of a replica and rebooting tolerance). Therefore,
among all processes in execution on the infected device, we
consider the features of the process with the highest priority.
The possible actions that can be taken based on process
features are depicted in Table 3, where columns represent
the process features (i.e., replication, rebooting), rows model
whether the process has or not that feature, whereas cells
denote possible actions to be implemented, respectively. The
final set of actions is obtained as the intersection among
the set of actions suggested for each process feature. We
adopt the intersection to ensure that the process will not
be interrupted if this impacts the operability. For example,
suppose the process has areplica (i.e., cell(1,1)) and does not
tolerate rebooting (i.e., cell(2,2)). In that case, the possible
actions are {CCP,DLF}: closing and changing ports and
deleting files, respectively, since rebooting the device will
cause the interruption of a high-priority process.

Example 1. Letr us consider a process without a replica
that does not tolerate rebooting. According to Table 3, the

Ahmed Lekssays et al.: Preprint submitted to Elsevier

Page 3 of 12

MalCon: A Blockchain-based Malware Containment Framework for Internet of Things

Table 2
Malware-based healing decision (PRP denotes a propagating malware while NPRP denotes a non-propagating malware)
EF DLF CR M ST oP
PRP FRMT | CCP,DLF | CCP,DLF,RBT | CCP,DLF | CCP,DLF,RBT | CCP,DLF
NPRP | FRMT | DLF DLF,RBT CCP,DLF | CCP,DLF,RBT | CCP,DLF

Table 3
Process-based healing decision
Replication Rebooting
Available CCP,DLF,RBT | CCP,DLF,RBT
Unavailable | CCP,DLF,RBT | CCP,DLF

returned actions are deleting files and closing ports (i.e.,
{CCP, DLF}), which are the result of the intersection
of {CCP,DLF, RBTY} (for replication unavailability) and
{CCP, DLF} (for rebooting intolerance). In case the pro-
cess tolerates rebooting, but it does not have a replica,
the available actions are rebooting, deleting files, and clos-
ing ports (i.e., {CCP,DLF, RBT}). Indeed, in this case,
the device can tolerate interruption for a short time (i.e,
time of rebooting) without compromising the system’s op-
erability. Finally, if a process has a replica, the avail-
able actions are: rebooting, deleting files, and closing ports
{CCP,DLF, RBT}, since the system’s operability will not
be compromised regardless of the chosen actions because
there is always a backup replica.

Healing strategy selection. The final healing strategy,
hereafter .S}, is obtained by considering the actions identi-
fied by both the malware-based decision process, denoted in
what follows as .S,,, and the process-based decision process,
denoted in what follows as S,,. .S}, is the intersection between
actions in S, and in .S),. The intersection ensures that if an
action in S, affects the system operability (i.e., rebooting),
and the process does not tolerate it, this action is removed
from the final healing strategy .S;,. As such, we combine
S,, and S, to have the lowest impact on the operability of
the system, by mitigating, at the same time, the different
malware malicious actions.

Example 2. Let us consider a malware m = {{ DLF, ST},
yes}, that propagates, deletes files, and sends traffic to an
external entity. Then, let us consider a process p = {no, yes}
running on a device infected by m, which means that there
are no replicas for this process, and it tolerates rebooting.
To determine the healing strategy Sy, we first derive the
actions S,,. These are defined as the union of all mitigation
actions corresponding to m malicious actions (i.e., the
union of cells (1,2) and (1,5) in Table 2). Thus, S,, =

{CCP,DLF}U{CCP,DLF,RBT}={CCP,DLF, RBT).

Actions in S, are the intersection of all the actions corre-
sponding to p’s features (i.e., the intersection of cells (2,1)
and (1,2) in Table 3). Thus, Sp = {CCP,DLF,RBT} n
{CCP,DLF,RBT} = {CCP,DLF,RBT}. Therefore,
S, ={CCP,DLF,RBT}n{CCP,DLF,RBT}={CCP,

DLF, RBT}, meaning that to stop the propagation of m we
close ports, delete the malware file, and reboot the device.

2.3. Strategies’ Execution Verification

In order to secure the network, we need to make sure
that the suggested actions in the emergency and healing
phases are indeed executed by the IoT devices. For this
purpose, in the strategies’ execution verification phase, we
perform a couple of checks for each suggested action. Table
4 shows the steps followed by the privileged peers to check
if an unprivileged peer executed the suggested strategy (see
Section 3.4 for more details). The only action that cannot be
directly checked is DLF, since privileged peers do not have
access to unprivileged devices, they cannot deterministically
check that a device deleted a file. However, for the purpose
of malware containment, not deleting a malicious file is dan-
gerous for the network only if the malware can propagate. To
this end, the propagation ability of the malware is mitigated
in the emergency strategy execution phase by closing and
changing ports. Thus, the effect of not being able to check
if an infected device actually deleted a file is only affecting
the device itself and not its neighbors or the whole network.
It is worth noting that the waiting periods (i.e., w; and w,)
specified in the table are configurable by the deployer of the
system.

3. Blockchain-based Containment

In this section, we discuss the implementation of the
proposed containment procedures over the blockchain. We
recall that our containment phases are emergency, healing,
and strategies’ execution verification. First, the emergency
phase aims to proactively stop the propagation of malware
in the network. Second, the healing phase aims to eradicate
the malware from the infected device. Finally, the strategies’
execution verification aims at keeping the system safe and
operating by making sure that the execution of strategies is
done properly.

MALCON leverages two “block-chains” that complement
each other. Hyperledger Fabric® hosts the smart contracts
needed for strategy selection. Here, only privileged de-
vices can execute these smart contracts. The unprivileged
peers can read from Hyperledger Fabric’s ledger and submit
transactions, but they cannot participate in the consensus.
Once selected, the strategy shall be executed only by one
privileged peer. For this purpose, we implement a voting
process to choose the privileged peer that will execute the
strategy. The voting process is run on IOTA Tangle’, which

8https://www.hyperledger.org/use/fabric
%https://www.iota.org

Ahmed Lekssays et al.: Preprint submitted to Elsevier

Page 4 of 12

MalCon: A Blockchain-based Malware Containment Framework for Internet of Things

Table 4
Strategies and their corresponding checks
Checks
FRMT | Ping the device w, seconds after submitting the strategy.
RBT Ping the device w, seconds after submitting the strategy.
DLF -
CCP Ping the device in the corresponding port.
Table 5 Table 6
MALCON's transactions MaLCoN's Notations
Transaction name Definition Notation | Definition
Peer identity pi,. = (piy» €, Pk, addr, env) w, Waiting time for checking rebooting actions
Peer profile PPy = {Dig> Per-t) w; Waiting time for checking formatting actions
Action a,, = (a;,;,cmd, env,t) Dia Peer's identifier
Strategy S = (8;4-aCtS, 1) e Peer’s endpoint
Malware m, = (m,dt,p,, ;) pk Peer’s public key
Election request € = (€igs s, Dins) addr Peer's IOTA address
Voting Uy = (Vig» Cig» €14 €F- 1) Der Most critical process
Execution confirmation | ec,. = (P4, €4, U, S, 1) t Timestamp
Sig Strategy's identifier
acts Strategy's actions
is used to initiate elections and share votes. We exploit the m Malware
real-time capabilities of IOTA Tangle with WebSockets to dt Malware's detection time
ensure a fast voting process. Dins Infected peer’s identifier
We recall that MALCON is a containment solution, so it ey Election’s identifier
is designed to be integrated with a detection system able to s Election’s suggested strategy
provide the malware information (e.g., ability to propagate, Vig Voter's identifier
malicious actions, ports used for propagation). We assume Cig Ca"dfdaFe’S identifier
that unprivileged peers have a detection system in place er Election’s round _ _ _
to report malware. We assume that the detection system is v Total votes that 2 cand|daTce got in an election
installed either in the IoT device (e.g., a Raspberry PI) or in cmd Com’mand.to be exec,Uted in the peer).
env Peer's environment (i.e., OS and architecture)

an edge device that monitors a set of computationally-limited
IoT devices. MALCON can be run at the edge since it is not a
heavy process, as shown in Section 5.3.2. Unprivileged peers
interact with the blockchain through HTTP requests that are
lightweight and do not require special software/hardware.
They do not run the blockchain client, and they do not
perform any blockchain-related activity (e.g., participating
in consensus, ordering transactions, storing a copy of the
ledger, etc). Moreover, we assume that privileged peers
are secured with strong passwords, and intrusion detection
systems are in place. The privileged peers in MALCON can
be workstations or servers. Table 5 summarizes MALCON’s
transactions that will be explained in the remainder of this
section, whereas Table 6 explains the used notations.

3.1. System Initialization and Update

In this section, we introduce the basic transactions used
to initialize and update the system. These transactions are
peer identity, peer profile, and strategy transactions (see
Table 5 for their format).

The peer identity transaction is submitted to Hyper-
ledger Fabric by all peers in the network when joining.
It encodes information about a peer, i.e., its identifier, the
endpoint where it will receive all system communications, its
public key, its IOTA address, and information about its envi-
ronment (i.e., operating system and architecture). In contrast,

the peer profile transaction is submitted to Hyperledger Fab-
ric by all peers of the network to communicate information
about their most critical process (that is, its tolerance to
rebooting and replica availability), and the timestamp of the
last update. A new transaction of this type is sent by a peer
whenever there is a change in the most critical process it
runs.

Action transactions are submitted to Hyperledger Fabric
by one privileged peer upon agreement among all privileged
ones. They contain information about each supported mit-
igation action, namely the action’s identifier (i.e., symbols
such as the ones defined in Table 1), the command to be
executed, the environment (e.g., operating system), and the
timestamp when it was published. This allows MALCON
to be flexible and customizable since the deployer of the
system can add actions depending on the devices that she
has in her network, making MALCON suitable to be run in
heterogeneous settings.

Finally, a strategy transaction is submitted to Hyper-
ledger Fabric by one privileged peer upon agreement among
all privileged ones. It holds information about a specific
strategy, namely its identifier, its actions (among those de-
fined in action transactions), and the timestamp when it was

Ahmed Lekssays et al.: Preprint submitted to Elsevier

Page 5 of 12

MalCon: A Blockchain-based Malware Containment Framework for Internet of Things

published. This allows the system to cope with new malware
when they appear.

3.2. Voting Process

We recall that a privileged peer is elected to execute the
suggested healing and emergency strategies. We assume that
the number of privileged peers is known to all of them. In
addition, we assume that an election’s round is valid if and
only if all the privileged peers voted.

In order to initiate an election to elect the privileged peer
who will execute the suggested strategies, an election request
transaction is submitted to IOTA Tangle by the Containment
Smart Contract, explained in detail in the next section. Each
election request transaction (cfr. Table 5) has an identifier,
a set of actions that were chosen by the Containment Smart
Contract, atimestamp denoting when it is submitted, and the
infected unprivileged peer’s identifier.

When an election request transaction is submitted, all
privileged peers vote randomly on a candidate excluding
themselves, by submitting to IOTA Tangle a voting trans-
action v,, (cfr. Table 5). The voting transaction consists of
the voter’s identifier, the candidate’s identifier, the election’s
identifier, the election’s round, and the timestamp when the
voting transaction is submitted. Each privileged peer then
counts the votes shared in the blockchain for a specific round
and compares it with the number of privileged peers. If all
privileged peers have voted, they download a copy of all
voting transactions for that specific election’s round. Then,
the votes are counted locally by all peers for each election
round. They locally sort the candidates based on their votes
to choose the privileged peer who win the election (i.e.,
the executor). If a peer discovered that he/she is the winner
through counting votes, it submits an execution confirmation
transaction ec;,. In case of a tie between two or more
candidates, other rounds are automatically initiated where
privileged peers vote on the candidates who got advanced
to the next rounds (i.e., candidates who had a tie in the
previous round). This process is repeated until there is no
tie, and only one candidate wins the election. When the
privileged peer who won the election submits an execution
confirmation transaction, the other privileged peers check
the result of the election to see if it matches the claim.
If it does, they generate and sign one-time usage tokens
with their private keys and send them to the executor via
its endpoint. The latter gathers strictly more than % of the
privileged peers’ tokens (including its own token). Then, it
sends a request containing the strategies to be executed with
the gathered tokens to the infected unprivileged peer via its
communication endpoint. The latter verifies the signatures
of the tokens with the privileged peers’ public keys. If they
are valid, it executes the strategies.

The above-described election procedure is adopted in all
MALCON phases, so the selection of the privileged peer who
will coordinate the execution of strategies is the same for
emergency, healing, and strategies’ execution verification.

Hyperledger

Fabric Priv. Peer

Unpriv. Peer IOTA Tangle

1 Il

—» |——Submit Voting Tx—>|

Submit Election

——Submit Malware Tx- Request Tx

Sul bm_it Exgcu tion
Confirmation Tx

Send Emergenc; T
Strategy

Submit Election __ | | gy pmit Voting Tx—>y
Request Tx

Submit Execution
Confirmation Tx

Send Healing I
Strategies |

Figure 1: Strategies execution sequence diagram

3.3. Emergency and Healing

Regarding the emergency phase, when an unprivileged
peer is attacked by malware, its detection system provides
the malware information which is then sent as a malware
transaction m;, (see Table 5) to Hyperledger Fabric. The
transaction holds the malware characteristics, its detection
time, and the identifier of the peer that detected it (i.e.,
infected peer). When a malware transaction is submitted,
the Containment Smart Contract, described in Algorithm
1, is executed. The Containment Smart Contract is used
for handling both the emergency and healing phase. Figure
1 shows the sequence diagram for selecting strategies in
MALCON.

We recall that, in the emergency phase, there is only
one action to be executed: closing and changing the ports
specified in the malware transaction, in case the malware has
propagation capabilities. Therefore, this step only requires
selecting a privileged peer to execute the action. This selec-
tion is made by a voting process (cfr. Section 3.2) triggered
by the Containment Smart Contract (lines 2-4 of Algorithm
1). The smart contract checks if the malware can propagate
(line 2); if so, it submits to IOTA Tangle an election request
(i.e, transaction e,,, defined in Table 5), with closing and
changing ports as action and the corresponding ports to be
closed (line 3). It is worth noting that submitElectionReqTx()
function takes as input the strategy and the ports needed to
be closed if CCP is suggested, otherwise the ports are an
empty list. This function takes these inputs and forms the
election request transaction e,, defined in Table 5. Then, it
submits e, to IOTA.

Algorithm 1 Containment smart contract run by privileged
peers

Input: Malware Transaction m,,
1: malware « getMalware(m,,)
. if malware.PRP == yes then
submitElectionReqT x([CC P], malware.ports)
end if
¢ Per < getCritical Process(p;,)
M,, — Malwarebased Healing Decision(malware)
M, — Processbased Healing Decision(p,,)
: HealingStrategy <« M,,n M,
: submitElectionReqT x(H ealing Strategy,[])

Ahmed Lekssays et al.: Preprint submitted to Elsevier

Page 6 of 12

MalCon: A Blockchain-based Malware Containment Framework for Internet of Things

Once the execution of the emergency phase (lines 2-4)
is done, the smart contract continues with the execution of
the healing phase (lines 5-9). First, it gets the most critical
process of the infected peer (line 5). Then, it determines the
mitigation actions to be executed on the basis of the malware
features, following the approach described in Section 2.2
(cfr. Table 2) (line 6). Similarly, it determines additional
mitigation actions on the basis of the characteristics of the
most critical process, (see Section 2.2 and Table 3) (line 7).
Finally, it intersects the malware-based and process-based
suggested actions to get the final healing strategy (line 8), as
explained in Section 2.2. Then, it submits an election request
transaction containing the strategy (line 9).

3.4. Strategies’ Execution Verification

When the winner of an election submits an execution
confirmation transaction, the strategies’ execution verifica-
tion procedure in Algorithm 2 is triggered. This procedure
is deployed at the level of each privileged peer. It starts by
retrieving information about the infected peer’s detection
endpoint (line 1) and initializes the checks (line 2). Then,
it checks if the infected unprivileged peer has executed the
strategies, following the procedure described in Algorithm
2 (lines 3-20). For closing and changing ports action, it
checks if the specified ports are closed or not (lines 4-8). For
formatting and rebooting, it waits for different periods (i.e.,
w ¢ and w,) depending on the action (in our implementation,
wy = 120 seconds and w, = 30 seconds), then it pings
the unprivileged peer to see if it is alive (lines 9-20). If
the device does not respond within the given time period,
the ping check is considered a failed check. If some checks
fail (including a failed ping request), it disables the infected
peer from any interaction with the blockchain and sends a
notification to the system admin to take the necessary miti-
gation actions (e.g., physically formatting it or removing it
from the network) (lines 21-24). One elected privileged peer
per period ¢ (specified by the deployer) is responsible for
sending a notification to the admin and disabling the infected
peer from submitting any transaction to the blockchain. All
privileged peers send the results of their checks to the elected
privileged peer at the end of each period ¢.

4. Security Analysis

In this section, we discuss our assumptions and possible
attacks that unprivileged peers could perform. In addition,
we show how we mitigate them to keep the system secure.

We recall that in MALCON we focus on containing
malware in IoT environments where organizations exchange
threat information for effective containment. We assume
each organization has an equal number of privileged peers
(e.g., admins) that represent them in all MALCON opera-
tions, and different numbers of unprivileged peers, that is,
IoT devices. The privileged peers participate in consensus
under the Byzantine Fault Tolerant model [1], so we assume
that 2 of them are honest. We assume that they are secured
with malware detection and intrusion detection mechanisms.

Algorithm 2 Strategies’ execution verification procedure
run by privileged peers

Input: Execution Confirmation Transaction ec,,
1: detection End point Port -
getDetectionEnd point Port(ec,,.in f ected Peer)
2: checks < 0
3: for MitigationAction in ec,,.strategy do
4. if MitigationAction == CC P then

5: port < ec,,.strategy.CCP.port

6: if ping(infected Peer,ec,,.strategy.CCP.ports) == True
then

7 checks « checks + 1

8 end if

9: else if MitigationAction == RBT then

10 wait(w,)

11 if ping(ec,,.infected Peer,detection End point Port) == True
then

12: checks < checks + 1

13: end if

14: else if MitigationAction == FRMT then

15: wait(wf)

16: if ping(ec,,.infected Peer,detection End point Port) == True
then

17: checks < checks + 1

18: end if

19: end if

20: end for

21: if checks < ec,,.strategy.size() then
22: Send AdminN oti fication()

23: DisablePeer(infected Peer)

24: end if

Thus, we focus on attacks on unprivileged peers. We note
that the decisions taken by privileged peers are a result of
running smart contracts. So, a privileged peer cannot make
a wrong decision because a consensus will not be reached
on it. However, we can consider the case where a privileged
peer decides to manipulate the output of the smart contracts
(it is from the 1 thatis not honest). In other words, it does not
follow the protocol and acts as a malicious peer. Although
this is against the assumptions of our protocol, we show
in what follows that the effect of such malicious activities
is limited. First, a privileged peer cannot target a specific
device since it is randomly selected, and it knows ahead of
time neither the peer that is infected nor the strategies it will
execute. Second, the best it can do is a denial of service to
an already infected device. For example, the infected device
reported that malware is using port 5555, and the privileged
peer asked to close port 5555 and port 7878 which is used
for a legitimate service. This action can trigger the system
administrator since the device will not be operational. Thus,
the attack itself cannot be done in a stealthy way.

We assume that the majority of unprivileged peers
is honest, but strictly less than the majority of unprivi-
leged peers could be compromised. Such assumptions were
adopted in other work involving blockchain and IoT, such
as [5, 13]. In MALCON, possible attacks that unprivileged
peers could perform are: 1) failing to execute strategies, 2)
repetitively submitting malware transactions, 3) submitting
fake malware transactions, and 4) not submitting malware
transactions.

Ahmed Lekssays et al.: Preprint submitted to Elsevier

Page 7 of 12

MalCon: A Blockchain-based Malware Containment Framework for Internet of Things

Failing to execute strategies. Unprivileged peers receiv-
ing a strategy to be executed could choose not to execute it.
We detect this attack for all supported actions, except DL F
(delete a file) through the strategies’ execution verification
phase, described in Section 3.4. After each execution, a
set of checks are performed to determine if the infected
device has executed the suggested strategies (this phase is
implemented by Algorithm 2 — lines 3-20). If the checks
fail, we disable the device to stop any interaction with the
blockchain and notify the system admin to take the necessary
actions (Algorithm 2 — lines 21-24). It is worth noting that for
DLF, we cannot check if the malware executable is deleted
or not. However, the malicious file is dangerous for the
network only if the malware can propagate. If the malware
propagates, closing and changing ports CC P actions will be
suggested (Algorithm | — lines 2-5). The execution of the
latter can be verified, so the malware will not propagate to
other devices.

Repetitively submitting malware transactions. Un-
privileged peers could repetitively submit transactions in
order to flood the system and cause a denial of service. In
order to detect this attack, we introduce a threshold ¢, that
represents the maximum number of allowed submissions in
a period @. So, after each submission, we check if the count
of submissions in a period ¢ exceeds t,4. If so, we disable
the device and notify the system admin to take the necessary
actions.

Submitting fake malware transactions. Unprivileged
peers could submit fake malware transactions to cause a
denial of service for specific services that the honest un-
privileged peers are running. However, for this attack, the
honest unprivileged peers will only execute one action (i.e.,
closing and changing ports) because this action will allow
the device to provide the service without interruption (as
discussed in Section 2.2 and done by Algorithm 1 — lines
2-4). So, if there is a service running in that specific port,
they will just forward it to another random port, so they will
not be affected. On the other hand, the infected unprivileged
peer will have to execute the emergency and healing strategy
that can be checked as discussed earlier. In addition, in case it
submits several fake malware transactions, it will be detected
as discussed in the repetitive submissions attack.

Not submitting malware transactions (i.e., free rid-
ing). Unprivileged peers could refrain from submitting
malware transactions. This attack could result in malware
spreading in the network. However, since the majority of the
unprivileged peers are honest, any malware circulating in
the network will be detected by an honest unprivileged peer.
We show the simulation and analysis of free-riding attacks
in Section 5.3.3.

5. Experiments

We test our solution’s effectiveness in stopping malware
from propagation and its performance in terms of contain-
ment time. We adopt two metrics: i) the difference between
the number of infected and uninfected devices with and
without our solution, and ii) the average time from the

malware detection to the moment of strategies execution by
the infected peers. In addition, we compared our solution
with the proposal described in [6], since, to our knowledge, it
is the only paper that does a similar experiment in a real-life
setting.

5.1. Environment

We have implemented our solution using Hyperledger
Fabric 2.2 locally on an octa-core Intel Core i7 3.6 GHz CPU
with 16 GB of RAM and with a Python client that connects
to IOTA 1.0 DevNet through PyOTA library. In Fabric,
we adopted the OR Endorsement Policy which implies the
random selection of one privileged peer to run the smart
contracts. All peers are simulated with Docker containers
with 512 MB of RAM.

To test our approach, we used two malware: Mirai [3]
and an in-house Mirai-like malware. Since we did not find
a live Mirai executable to simulate the actual spreading, we
built the source code extracted from a public repository'?
with our C&C server. On the other hand, the in-house Mirai-
like malware infects devices by brute-forcing credentials
from Mirai’s words list, using Telnet protocol with multi-
threading, similar to Mirai. The in-house Mirai-like malware
was designed for quick infection, similar to the in-house
malware built by [6]. We used Mirai for all the experiments,
except for the comparison with [6]. To challenge our solu-
tion, all unprivileged devices are configured with a password
randomly selected from the Mirai words list. This allows
fast malware to spread in the network, which is considered a
worst-case scenario. In contrast, the privileged devices were
configured with strong passwords.

5.2. Experimental Settings

To test our solution under different scenarios, we have
considered the following factors:

Network’s connectivity. The number of links among
nodes impacts the spreading speed. For example, in the
case of a fully connected network, an infected node quickly
spreads the malware to the network. Thus, we consider
a fully connected network as an extreme case for testing
MALCON.

Security level of passwords. Using default passwords or
common weak passwords makes the malware spread faster
since they brute force devices’ credentials using a hardcoded
word list. Thus, adopting weak passwords from botnets’
words list is an extreme case for testing MALCON.

Number of privileged peers. MALCON relies on a
voting process among privileged peers, where a tie among
candidates would imply additional voting rounds. Thus, the
number of privileged peers impacts the containment time.
Thus, a large number of privileged peers is an extreme case
for MALCON performance.

5.2.1. Scenarios
We tested MALCON in three different scenarios, adapted
from real-life settings.

10https://github.com/jgamblin/Mirai-Source-Code

Ahmed Lekssays et al.: Preprint submitted to Elsevier

Page 8 of 12

MalCon: A Blockchain-based Malware Containment Framework for Internet of Things

Figure 2: The smart city network topology for Scenario #1 (The node IDs are in the format peerlD /organizationID)

Scenario #1: Smart City. This scenario is based on a
realistic IoT setting involving multiple organizations (e.g.,
vendors, Internet Service Providers, etc.). Here, the orga-
nizations create a consortium that agrees to exchange in-
formation about malware threats in a decentralized fashion.
This scenario’s topology consists of 5 organizations and 60
devices, as shown in Figure 2, where the infected device,
privileged peers, and unprivileged peers are colored in red,
yellow, and green, respectively. This network topology is
adopted in various works about smart cities [16] and health
care systems [8]. This scenario presents several challenges
for MALCON performance. The network topology is con-
nected (each device is connected to one or more devices). In
addition, the initial device that we infected has the highest
number of neighbors (i.e., 7 direct neighbors). Moreover, all
the unprivileged peers have weak passwords.

Scenario #2: Fully Connected Network. This scenario
is an extreme case where the network is fully connected. So,
all devices have 59 adjacent peers.

Scenario #3: Small Network. In this scenario, we adopt
the experiment settings in [6]. We contacted the authors of
[6] to get the missing experiment’s details (e.g., the in-house
malware implementation, network topologies, etc.). Their
network consists of 20 devices configured with random weak
passwords hardcoded in their in-house malware. Regarding
network topologies, they adopt random ones, where a device
is at least connected to another device.

5.3. Results
5.3.1. Effectiveness

Scenario #1: Smart City. The baseline for this scenario
is the network without MALCON. The goal is to see the
difference of infected devices between the baseline and
MALCON after injecting Mirai botnet in a device. We infect
the unprivileged device with the highest number of direct
connections (i.e., 7 in the network topology shown in Figure
2). The average time of brute-forcing credentials by Mirai
is 7 seconds. After 50 seconds, 51 over 60 devices were
infected. The 9 non-infected devices consist of 5 privileged
peers that, by design, have strong passwords; and 4 unprivi-
leged peers, that were connected only to a privileged peer,
so the infection did not reach them because of the strong
passwords. On the other hand, with MALCON enabled, only
3 devices were infected, including the device where we
injected Mirai intentionally. The two infected devices had
passwords that happened to be the first ones in the hardcoded
passwords list used by Mirai. Figure 3 shows the comparison
between enabling and disabling MALCON (i.e., baseline).

Scenario #2: Fully Connected Network. The Mirai
botnet was injected on a random unprivileged device since
the network is fully connected, so each device has 59 direct
neighbors. As in the previous experiment, the baseline is the
network without MALCON. The infected devices after 10
seconds are 23. After 20 seconds, 55 devices were infected.
After enabling MALCON, only 13 devices were infected,
and the infection happened in the first 10 seconds and then
stopped. Figure 4 shows the comparison between the base-
line and MALCON enabled, in a fully connected network.

Ahmed Lekssays et al.: Preprint submitted to Elsevier

Page 9 of 12

MalCon: A Blockchain-based Malware Containment Framework for Internet of Things

M Baseline
MalCon

30
20
20 40

Time in Seconds

Number of Infected Devices

o

60

Figure 3: Number of infected devices, by enabling and disabling
MALCON for Scenario #1

Time in Seconds

M Baseline
MalCon

w
o

) .

Number of Infected Devices
w
o

Figure 4: Number of infected devices by enabling and disabling
MALCoN for Scenario #2

Scenario #3: Small Network. We compare our solution
with the solution discussed in [6]. The authors in [6] infected
at each try two random devices in the network with an in-
house developed malware. They repeated the experiment
1000 times with random network topologies at each try
with the condition that any device is connected at least to
another device where each try lasts 40 seconds. Then, they
calculate the average rate of infection by dividing the total
number of infections counted in the 1000 tries by the total
number of tries. We tested our solution with the same setting
using our in-house Mirai-like malware and random weak
passwords from the Mirai words list. While the average
infection rate of [6] is 1.27, our average rate of infection
under the same conditions was 1.05, which makes MALCON
a suitable solution for malware containment.

5.3.2. Performance

We conducted an experiment to check the average time
to contain malware with a different number of organizations.
For this experiment, our average containment time results
show that it takes 0.98 seconds and 5.19 seconds to contain
malware in a network of 3 and 20 organizations, respectively.

It is worth mentioning that the number of unprivileged nodes
does not affect the average containment time.

In order to test the feasibility in a real-world setting,
we further tested MALCON in a network of 7 simulated
devices and 3 Raspberry PIs, to measure MALCON’s re-
source consumption. We used Raspberry PI 2 Model B with
a Quad Core Cortex-A53 CPU with ARMv7 Architecture
(32-bit) and 1 GB of RAM for all the devices. We selected
this specific model since it has limited computational power
compared to its successors (e.g., Raspberry Pi 4 Model B).
An instance of MALCON was deployed on the Raspberry
PIs, while other IoT devices in the network were simulated
using Docker containers on a server. To detect malware,
we used ClamAV!! an open-source antivirus engine, on
all devices. Our results show that MALCON’s CPU con-
sumption ranges between 2.47% and 25.0% with an average
of 7.3%. In addition, RAM usage varies from 2.53% to
88.18% with an average of 13.9%. The peaks in resource
usage were observed while performing a full scan of the
disk. We selected a full scan since it is a heavy process
that overloads the memory. It is worth noting that a full
scan is not needed to keep MALCON operational. MALCON
expects a detection system in place as a hidden process that
monitors the files and scans new files. This task is performed
by the devices with a reasonable resource consumption as
shown earlier. For MALCON, the devices do not run the
blockchain client (e.g., they do not participate in consensus
and they do not have a copy of the ledger). They only interact
with blockchain endpoints through HTTP requests (e.g., to
report malware). Thus, MALCON as a standalone application
is lightweight and can be used alongside an antivirus in
computationally limited IoT devices.

We iterate that MalCon supports different computing
paradigms. In case there is an edge or a fog node that controls
low-power IoT devices, these nodes will do the detection
on their behalf. Otherwise, the IoT device itself can do it.
We supported this claim with a limited Raspberry Pi from
the old generation with only 1 GB of RAM. In addition,
the protocol itself is lightweight since it is only an HTTP
server, so even the very limited IoT devices can support it.
Regarding the commands, they can be tailored depending
on the IoT devices environment (i.e., operating system and
architecture) as discussed in Section 3.

5.3.3. Free Riding Simulation and Analysis

In order to evaluate the effect of devices that refrain
from submitting malware transactions to MALCON, we have
simulated a network with different percentages of malicious
nodes, namely 10%, 30%, and 49%. We have simulated a
network of 60 devices with 10 randomly generated topolo-
gies where a device is a least connected to another device.
It is worth mentioning that this attack is only a danger for
the network if the devices are infected and they refrain from
submitting the detection to MALCON. So, in our simulation,
we assume that they are infected, and are trying to infect
other devices.

http://www.clamav.net/

Ahmed Lekssays et al.: Preprint submitted to Elsevier

Page 10 of 12

MalCon: A Blockchain-based Malware Containment Framework for Internet of Things

For 10% of malicious nodes (6 malicious devices out of
60), the 6 devices were identified for not submitting malware
transactions almost immediately in about an average of 0.06
seconds. For 30% of malicious nodes (18 malicious devices
out of 60), the average identification time is 1.12 seconds.
Finally, for 49% of malicious nodes (29 malicious devices
out of 60), the average identification time is 1.89 seconds.

In order to better interpret and quantify these results, we
have done a probability analysis for this simulation. Based
on the randomly generated topologies, the average number
of neighbors per node is 2. In our network, we have two types
of nodes: honest and malicious. In order to avoid immediate
identification, a malicious node needs to have two malicious
nodes as neighbors (even if this information is not available
for the nodes initially). Let M and N be the number of mali-
cious devices and the total number of devices, respectively.
The probability of having two malicious neighbors P(m) is
shown in Equation 1.

M2—1)
()

For 10% malicious nodes, P(m;;) = 0.58%. For 30%
malicious nodes, P(mszy) = 7.94%. Finally, for 49% mali-
cious nodes, P(myq) = 22.09%. So, the probability analysis
confirms the simulation results. Thus, MALCON is able to
operate where strictly less than % of devices refrain from
submitting malware transactions.

P(m) = ey

5.3.4. Discussion

The conducted experiments show that MALCON is suit-
able for malware containment in IoT networks since it sig-
nificantly reduces the number of infected devices in the
network. For instance, even in a fully connected network
with weak passwords, only 13 devices out of 55 were in-
fected. In addition, in a typical IoT setting, only three devices
were infected. The average infection rate in our solution is
1.05 compared to [6] which has 1.27. On the other hand,
the average containment time from the moment of the de-
tection to the moment of executing strategies varies from
0.98 seconds to 5.19 seconds for 3 and 20 organizations,
respectively. So, MALCON is suitable for large deployments
because unprivileged peers do not affect its performance. It
is worth noting that the containment time is highly affected
by IOTA’s latency and the geolocation of the nearest node.
MALCON uses IOTA’s 1.0 DevNet which has lower through-
put compared to the mainnet.

6. Conclusion

In this paper, we have presented MALCON, a blockchain-
based malware containment framework for IoT. It aims to
limit the damages that malware can do in IoT networks by
proactively stopping them from propagation while keeping
the network operational. It exploits collaboration among

different organizations to share malware information. It sug-
gests tailored strategies for all devices to prevent propaga-
tion based on the malware’s propagation scheme and the
processes that they run. As a part of our future work, we
aim to migrate MALCON to a permissionless blockchain and
analyze the attack vectors that come with such migration.
In addition, we plan to remove the human-in-the-loop when
contacting the system administrator in some emergency
cases.

Acknowledgements

We thank the anonymous reviewers for the useful feed-
back and insights that helped us improve the quality of this
manuscript.

Declarations

Funding. This work has received funding from the
Marie Sklodowska-Curie Innovative Training Network Real-
time Analytics for Internet of Sports (RAIS) supported by
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 813162. The content
of this paper reflects only the authors’ view and the Agency
and the Commission are not responsible for any use that may
be made of the information it contains.

Conflicts of interest. The authors declare that they have
no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported
in this paper.

Availability of data and material. The authors declare
that all the data used in experiments in this paper are freely
available via the mentioned sources in the corresponding
sections.

Code availability. The authors declare that they have
open-sourced all the parts of MalCon on https://github.
com/Lekssays/malcon.

CRediT authorship contribution statement

Ahmed Lekssays: Conceptualization, Methodology,
Software, Writing - Original Draft. Barbara Carminati:
Conceptualization, Methodology, Writing - Review & Edit-
ing, Supervision. Elena Ferrari: Conceptualization, Method-
ology, Writing - Review & Editing, Supervision.

References

[1] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K.,
De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y.,
et al., 2018. Hyperledger fabric: a distributed operating system for
permissioned blockchains, in: Proceedings of the thirteenth EuroSys
conference, pp. 1-15.

[2] Angrishi, K., 2017. Turning internet of things (iot) into internet of
vulnerabilities (iov): Tot botnets. arXiv preprint arXiv:1702.03681 .

[3] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E.,
Cochran, J., Durumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis,
M., et al., 2017. Understanding the mirai botnet, in: 26th {USENIX}
security symposium ({ USENIX} Security 17), pp. 1093-1110.

Ahmed Lekssays et al.: Preprint submitted to Elsevier

Page 11 of 12

https://github.com/Lekssays/malcon
https://github.com/Lekssays/malcon

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

(12]

(13]

(14]

(15]

[16]

MalCon: A Blockchain-based Malware Containment Framework for Internet of Things

Damshenas, M., Dehghantanha, A., Mahmoud, R., 2013. A survey on
malware propagation, analysis, and detection. International Journal of
Cyber-Security and Digital Forensics 2, 10-30.

Desai, H.B., Ozdayi, M.S., Kantarcioglu, M., 2021. Blockfla: Ac-
countable federated learning via hybrid blockchain architecture, in:
Proceedings of the Eleventh ACM Conference on Data and Applica-
tion Security and Privacy, pp. 101-112.

Dinakarrao, S.M.P., Guo, X., Sayadi, H., Nowzari, C., Sasan, A.,
Rafatirad, S., Zhao, L., Homayoun, H., 2020. Cognitive and scalable
technique for securing iot networks against malware epidemics. IEEE
Access 8, 138508-138528.

Dinakarrao, S.M.P., Sayadi, H., Makrani, H.M., Nowzari, C., Rafati-
rad, S., Homayoun, H., 2019. Lightweight node-level malware
detection and network-level malware confinement in iot networks, in:
2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), IEEE. pp. 776-781.

Elsts, A., Fafoutis, X., Woznowski, P., Tonkin, E., Oikonomou, G.,
Piechocki, R., Craddock, 1., 2018. Enabling healthcare in smart
homes: the sphere iot network infrastructure. IEEE Communications
Magazine 56, 164—170.

Humayun, M., Jhanjhi, N., Alsayat, A., Ponnusamy, V., 2020. Inter-
net of things and ransomware: evolution, mitigation and prevention.
Egyptian Informatics Journal .

Idika, N., Mathur, A.P., 2007. A survey of malware detection
techniques. Purdue University 48.

Jaramillo, L., 2018. Malware detection and mitigation techniques:
lessons learned from mirai ddos attack. Journal of Information
Systems Engineering & Management 3, 19.

Malvankar, A., Payne, J., Budhraja, K.K., Kundu, A., Chari, S.,
Mohania, M., 2019. Malware containment in cloud, in: 2019 First
IEEE International Conference on Trust, Privacy and Security in
Intelligent Systems and Applications (TPS-ISA), IEEE. pp. 221-227.
Mugunthan, V., Rahman, R., Kagal, L., 2021. Blockflow: De-
centralized, privacy-preserving, and accountable federated machine
learning, in: International Congress on Blockchain and Applications,
Springer. pp. 233-242.

NIST, S., 2013. 800-83. Guide to Malware Incident Prevention and
Handling .

Saeed, I.A., Selamat, A., Abuagoub, A.M., 2013. A survey on
malware and malware detection systems. International Journal of
Computer Applications 67.

Zhong, C.L., Zhu, Z., Huang, R.G., 2015. Study on the iot architecture
and gateway technology, in: 2015 14th International Symposium on
Distributed Computing and Applications for Business Engineering
and Science (DCABES), IEEE. pp. 196-199.

Ahmed Lekssays et al.: Preprint submitted to Elsevier

Page 12 of 12

