
1Scientific Data |           (2022) 9:663  | https://doi.org/10.1038/s41597-022-01764-x

www.nature.com/scientificdata

LifeSnaps, a 4-month multi-modal 
dataset capturing unobtrusive 
snapshots of our lives in the wild
Sofia Yfantidou1 ✉, Christina Karagianni1, Stefanos Efstathiou1, Athena Vakali1 ✉, 
Joao Palotti2, Dimitrios Panteleimon Giakatos1, Thomas Marchioro3, Andrei Kazlouski3, 
Elena Ferrari4 & Šarūnas Girdzijauskas5

Ubiquitous self-tracking technologies have penetrated various aspects of our lives, from physical and 
mental health monitoring to fitness and entertainment. Yet, limited data exist on the association 
between in the wild large-scale physical activity patterns, sleep, stress, and overall health, and 
behavioral and psychological patterns due to challenges in collecting and releasing such datasets, 
including waning user engagement or privacy considerations. In this paper, we present the LifeSnaps 
dataset, a multi-modal, longitudinal, and geographically-distributed dataset containing a plethora 
of anthropological data, collected unobtrusively for the total course of more than 4 months by n = 71 
participants. LifeSnaps contains more than 35 different data types from second to daily granularity, 
totaling more than 71 M rows of data. The participants contributed their data through validated 
surveys, ecological momentary assessments, and a Fitbit Sense smartwatch and consented to make 
these data available to empower future research. We envision that releasing this large-scale dataset 
of multi-modal real-world data will open novel research opportunities and potential applications in 
multiple disciplines.

Background & Summary
The past decade has witnessed the arrival of ubiquitous wearable technologies with the potential to shed light 
on many aspects of human life. Studies with toddlers1, older adults2, students3, athletes4, or even office workers5 
can be enriched with wearable devices and their increasing number of measured parameters. While the use 
of wearable technologies fosters research in various areas, such as privacy and security6, activity recognition7, 
human-computer interaction8, device miniaturization9 and energy consumption10, one of the most significant 
prospects is to transform healthcare by providing objective measurements of physical behaviors at a low-cost 
and unprecedented scale11. Many branches of medicine, such as sports and physical activity12, sleep13 and mental 
health14, to name a few, are turning to wearables for scientific evidence. However, the laborious work of clinically 
validating the biometric data generated by these new devices is of critical importance and often disregarded15.

In recent years, with the intent to further clinically validate the data generated by smart and wearable devices, 
considerable effort has been directed toward building several datasets covering a variety of health problems 
and sociological issues3,16–21. For instance, the largest cohort ever studied comes from Althoff et al.16 in 2017. 
They collected 68 M days of physical activity data from 717k mobile phone users distributed across 111 coun-
tries. The study aimed to correlate inactivity and obesity within and across countries. Unfortunately, the data 
from this study is somewhat limited to any other research question, as only the aggregated numbers were made 
public. Likewise, exclusively focusing on asthma, Chan et al.17 also developed a mobile application to collect 
data from 6k users with daily questionnaires on the participants’ asthma symptoms. With a focus on cardio-
vascular health, the MyHeartCounts Cardiovascular Health Study18 is another extensive study containing 50k 
participants recruited in the US within six months. Although many participants enrolled in the study, the mean 
engagement time with the app per user was only 4.1 days. As a result of selecting only one health problem 
and collecting data exclusively for that specific condition, the collected data are often of limited use to other 
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researchers. Closer to our scale and philosophy, Philip Schmidt et al.21 published the WESAD dataset, studying 
stress among 15 people, recent graduates, in the lab during a 2-hour experiment. Thus, WESAD is inherently 
different as it does not capture a realistic picture of our lives in the wild, given that the recruiting is restricted, 
and the emotional conditions are provoked in lab conditions. Similar to our study, Vaizman et al.20 collected data 
from 60 users, exploiting different types of everyday devices like smartphones and smartwatches. Nevertheless, 
the mean participation time was only 7.6 days. In the same line, the StudentLife3 app collected daily data from 
the devices of 48 students throughout the 10-week term at Dartmouth College, seeking the effect of workload 
on stress levels and general students’ well-being and mental health. Table 1 facilitates the comparison between 
the contributions and limitations of the above-mentioned previous works. Our study possesses complementary 
contributions, incorporating new sensors and surveys, and subsequently adding new data types overtaking the 
above-mentioned works.

Our goal is to provide researchers and practitioners with a rich, open-to-use dataset that has been thor-
oughly anonymized and ubiquitously captures human behavior in the wild, namely humans’ authentic behavior 
in their regular environments. Designed to be of general utility, this paper introduces the LifeSnaps dataset, a 
multi-modal, longitudinal, space and time distributed dataset containing a plethora of anthropological data such 
as physical activity, sleep, temperature, heart rate, blood oxygenation, stress, and mood of 71 participants collected 
from mid-2021 to early-2022. Figure 1 summarizes the study in terms of modalities, locations, and timelines.

In synthesis, the LifeSnaps dataset’s main contributions are:

•	 Privacy and anonymity: we follow the state-of-the-art anonymization guidelines22 and EU’s General Data 
Protection Regulation (GDPR)23 to collect, process, and distribute participants’ data, and ensure privacy and 
anonymity for those involved in the study. Specifically, the LifeSnaps study abides by GDPR’s core principles, 
namely lawfulness, fairness and transparency, purpose limitation, data minimization, accuracy, storage limi-
tation, and integrity and confidentiality23.

•	 Data modalities: we use three complementary, heterogeneous data modalities: (1) survey data, containing 
evaluations such as personality and anxiety scores; (2) ecological momentary assessments to extract partici-
pants’ daily goals, mood, and context; and (3) sensing data from a flagship smartwatch;

•	 Emerging datatypes: due to the use of a recently released device (FitBit Sense was released at the end of Sep-
tember 2020), various new data types that are rarely studied, such as temperature, oxygen saturation, heart 
rate variability, automatically assessed stress and sleep phases are now open and available, empowering the 
next wave of sensing research;

•	 Rich data granularity: we aim to provide future researchers with the best data granularity possible, for that, 
we make available data as raw as technologically possible. Different data types exhibit different levels of detail, 
from second to daily granularity, always with respect to privacy constraints;

•	 Community code sharing and reproducibility: apart from the raw data format, we also provide a set of pre-
processing scripts (https://github.com/Datalab-AUTH/LifeSnaps-EDA), aiming to facilitate future research 
and familiarize researchers and practitioners who can largely exploit and use LifeSnaps data;

•	 In the wild data: participants were explicitly told to move on with their lives, as usual, engaging in their nat-
ural and unscripted behavior, while no lab conditions or restrictions were imposed on them. This ensures the 
in the wild nature of the dataset and subsequently its ecological validity;

•	 Trade-offs scale, duration and participation: we designed the study to have a fair balance between the study 
length (8 weeks) and the number of participants (71), setting and conducting weekly reminders and fol-
low-ups to maintain engagement. For this reason, we envision the LifeSnaps dataset can facilitate research in 
various scientific domains.

Our goal in sharing LifeSnaps is to empower future research in different disciplines from diverse perspec-
tives. We believe that LifeSnaps, as a multi-modal, privacy-preserving, distributed in time and space, easily 
reproducible, and rich granularity time-series dataset will help the scientific community to answer questions 
related to human life, physical and mental health, and overall support scientific curiosity concerning sensing 
technologies.

Datasets

Contributions

Open 
to use 
data

Multimodal 
data

Novel 
datatypes

Rich 
granularity

In-the-
wild data Interdisciplinarity Reproducibility

Activity inequality16 ✓ ✓ ✓

The asthma mobile health 
study17 ✓ ✓ ✓

MyHeart Counts Study18 ✓ ✓

WESAD21 ✓ ✓ ✓

Recognizing Detailed 
Human Context In-The-
Wild20

✓ ✓ ✓ ✓ ✓

StudentLife3 ✓ ✓ ✓

LifeSnaps ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Comparison between related datasets and the LifeSnaps data.
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Methods
This section discusses participants’ recruitment and demographics and moves on to describe the study’s time-
line, data collection process, and data availability. Finally, it sheds light on user engagement, data quality, and 
completeness issues.

Participants. Participants’ recruitment was geographically distributed in four countries, namely Greece, 
Cyprus, Italy, and Sweden, while the study was approved by the Institutional Review Board (IRB) of the Aristotle 
University of Thessaloniki (Protocol Number 43661/2021). All study participants were recruited through con-
venience sampling or volunteering calls to university mailing lists. In the end, the locations of the participants 
recruited coincide with the locations of the partner universities of the RAIS consortium, which organized the 
LifeSnaps study. Namely, there were 24 participants in Sweden, 10 in Italy, 25 in Greece, and 12 in Cyprus, as 
depicted in Fig. 1. Participants were not awarded any monetary or other incentives for their participation. As 
mentioned earlier, all participants provided written informed consent to data processing and to de-identified data 
sharing. The content of the informed consent is also delineated on the study’s web page (https://rais-experiment.
csd.auth.gr/the-experiment/). Specifically, released data is de-identified and linked only by a subject identifier. 
We initially recruited 77 participants, of which 4 dropped out of the study, 1 faced technical difficulties during 
data export, and 1 withdrew consent, leading to a total number of 71 study participants. This translates to a 7% 
drop rate, lower than similar in the wild studies3,18. We further discuss user engagement with the study in a later 
section.

To participate, subjects were required to (a) have exclusive access to a Bluetooth-enabled mobile phone with 
internet access without any operating system restrictions for the full study duration, (b) have exclusive access 
to a personal e-mail for the full study duration, (c) be at least 18 years old at the time of recruitment, and (d) 
be willing to wear and sync a wearable sensor so that data can be collected and transmitted to the researchers.

Among the 71 participants who completed the study, 42 are male, and 29 are female, with an approxi-
mate 60/40 ratio. All but two provided their age, half under 30 and half over 30 (ranges are defined so that 
k-anonymity is guaranteed). Two participants reported incorrect weight values, making it impossible to com-
pute their BMI. Among the rest, 55.1% had a BMI of 19 or lower, 23.2% were in the range 20–24, 14.5% were in 
the range 25–29, and the remaining 7.2% had 30 or above. The highest level of education for most participants 
(68%) is the Master’s degree, while 14.9% had completed Bachelor’s and the other 16.4% had a Ph.D. or a higher 
degree. Histograms summarizing these distributions are shown in Fig. 2.

With regard to the participants’ usage of wearable devices, out of 66 responses, 51% stated that they currently 
own or have owned a wearable device in the past. Out of those who have not used wearables, 40% identified 
high cost as a preventive factor, while only 3% mentioned technical difficulties or trust in their own body, and 
none reported general mistrust towards wearables (multiple choice possible). Out of those who do use weara-
bles, 44% purchased them to gain increased control over their physical activity, 44% due to general interest in 
technology, 38% for encouragement reasons, 35% for health monitoring, 18% received them as a gift, 15% after 
a doctor’s recommendation, and 9% through an insurance rewards’ program (multiple choice possible). The 
most common indicators tracked include heart rate (91%), step count (88%), distance (73%), calories (62%), 
and exercise duration (55%). Finally, concerning sharing of sensing data, 32% of participants have shared data 

Fig. 1 The study timeline, the data collected, and the country of residency of our participants in Europe.
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with researchers or friends, or family, while a smaller percentage has shared data with exercise platforms (15%), 
such as Strava, or their doctor (6%).

All study participants wore a Fitbit Sense smartwatch (https://www.fitbit.com/global/us/products/smart-
watches/sense) for the duration of the study, while no other incentives were given to the participants. The watch 
was returned at the end of the study period.

Study procedure. The LifeSnaps Study is a two-round study; the first round ran from May 24th, 2021 to July 
26th, 2021 (n = 38), while the second round ran from November 15th, 2021 to January 17th, 2022 (n = 34), total-
ing more than four months and 71 M rows of user data. One participant joined both study rounds. In this section, 
we discuss the entry and exit procedure, the data collection and monitoring, and related privacy considerations 
(see Fig. 3).

Participant entry and exit. Upon recruitment, each participant received a starter pack, including information 
about the study (e.g., study purpose, types of data collected, data management), as well as a step-by-step instruc-
tions manual (https://rais-experiment.csd.auth.gr/). Note that we conducted the study amidst the Covid-19 pan-
demic in compliance with the national and regional restrictions, minimizing in-person contact and encouraging 
remote recruitment. Initially, each participant provided written informed consent to data processing and shar-
ing of the de-identified data. Specifically, they were informed that after the end of the study, the data would be 
anonymized so that their identity could no longer be inferred and shared with the scientific community. Then, 
they were instructed to set up their Fitbit devices, authorize our study compliance app to access their Fitbit data, 
and install the SEMA3 EMA mobile application24. Participants were encouraged to carry on with their normal 
routine and wear their Fitbit as much as possible. At the end of the study, participants were instructed to export 
and share their Fitbit data with the researchers and reset and return their Fitbit Sense device.

During the entry stage, a series of health, psychological, and demographic baseline surveys were adminis-
tered using a university-hosted instance of LimeSurvey25. During the exit stage, we re-administered a subset of 
the entry surveys as post-measures. Specifically, we distributed a demographics survey, the Physical Activity 
Readiness Questionnaire (PAR-Q)26, and the 50-item International Personality Item Pool version of the Big Five 
Markers (IPIP)27 at entry, and the Stages and Processes of Change Questionnaire28,29, a subset of the transtheo-
retical model (TTM) constructs30,31, and the Behavioural Regulations in Exercise Questionnaire (BREQ-2)32,33 
at entry and exit, as shown in Table 2. Note that the demographics and PAR-Q surveys are excluded from the 
published dataset for anonymity purposes. Figure 4 delineates the entry and exit stages’ flow.

Fig. 2 Histograms representing the distributions of demographic attributes among the 71 participants. Each 
column displays the number of occurrences for the corresponding category. Note that some participants did not 
reveal their age, BMI, or level of education.
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Data acquisition. The data collection phase lasted for up to 9 weeks for each study round, incorporating 
three distinct data modalities, each with its own set of advantages as discussed below (see Fig. 4 for the time flow 
of the 9-week study):

Fitbit data. This modality includes 71 M rows of sensing data collected in the wild from the participants’ Fitbit 
Sense devices. The term “in the wild” was first coined in the field of anthropology34–36, referring to cognition 
in the wild. Nowadays, its definition is broader, referring to “research that seeks to understand new technology 
interventions in everyday living”37. Sensing data collected in the wild are likely to provide a more accurate and 
representative picture of an individual’s behavior than a snapshot of data collected in a lab38, thus facilitating the 
development of ecologically valid systems that work well in the real world39.

At the time of the study, Fitbit Sense is the flagship smartwatch of Fitbit embedded with a 3-axis accelerome-
ter, gyroscope, altimeter, built-in GPS receiver, multi-path optical heart rate tracker, on-wrist skin temperature, 
ambient light, and multipurpose electrical sensors, as per the device manual and sensor specifications40. While 
the majority of offline raw sensor data (e.g., accelerometer or gyroscope measurements) are not available for 
research purposes, we have collected a great number of heterogeneous aggregated data of varying granularity, as 
shown in Table 2. Such data include, but are not limited to, steps, sleep, physical activity, and heart rate, but also 
data types from newly-integrated sensors, such as electrodermal activity (EDA) responses, electrocardiogram 
(ECG) readings, oxygen saturation (SpO2), VO2 max, nightly temperature, and stress indicators as shown in 
Table 2. All timestamp values follow the form of the Fitbit API as mentioned in the documentation (https://
dev.fitbit.com/build/reference/device-api/accelerometer/), while all duration values in Fitbit data types, such as 
exercise, mindfulness sessions, and sleep types, are measured in milliseconds.

SEMA3 data. This modality includes more than 15 K participants’ Ecological Momentary Assessment (EMA) 
self-reports with regard to their step goals, mood, and location. EMA involves “repeated sampling of subjects’ 
current behaviors and experiences in real-time, in subjects’ natural environments”41. EMA benefits include more 
accurate data production than traditional surveys due to reduced recall bias, maximized ecological validity, 
and the potential for repeated assessment41. Additionally, complementary to sensing data that do not compre-
hensively evaluate an individual’s daily experiences, EMA surveys can capture more detailed time courses of a 
person’s subjective experiences and how they relate to objectively measured data42.

We distribute two distinct EMAs through the SEMA3 app: the step goal EMA (from now onward called Step 
Goal Survey) and the context and mood EMA (from now onward called Context and Mood Survey), as seen in 
Table 2. Once a day (morning), we schedule the Step Goal Survey; namely, we ask the participants how many 
steps they would like to achieve on that day with choices ranging from less than 2000 to more than 25000. Thrice 
a day (morning-afternoon-evening), we schedule the Context and Mood Survey, namely, we inquire the partici-
pants about their current location and feelings. The location choices include home, work/school, restaurant/bar/
entertainment venues, transit, and others (free text field). An option “Home Office” is also added on the second 

Fig. 3 The study procedure from both the participants (left) and researchers’ (right) viewpoint.
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Modality Data Type Description
First 
Appears Recurring

#unique 
users #responses

Surveys

Demographics Questionnaire Survey w.r.t. gender, age, ethnicity, education, and usage of 
wearable devices (partly excluded for anonymization purposes) Week 1 Entry 66 66

Physical Activity Readiness Questionnaire 
(PAR-Q)26

Survey to determine the safety or possible risks of exercising 
based on health history, current symptoms, and risk factors 
(excluded for anonymization purposes)

Week 1 Entry 57 N/A

Stages and Processes of Change 
Questionnaire28,29

Survey to determine dimensions of the Transtheoretical 
model31 that enable us to understand how shifts in exercise 
behavior occur

Week 2 Entry-Exit 55 102

Behavioural Regulations in Exercise 
Questionnaire (BREQ-2)32

Survey to measure the stages of the self-determination 
continuum33 with respect to motivation to exercise Week 2 Entry-Exit 54 99

50-item International Personality Item Pool 
version of the Big Five Markers (IPIP)27

Survey to assess users on the Big Five model of Openness, 
Conscientiousness, Extraversion, Agreeableness & 
Neuroticism55

Week 2 Entry 52 52

Positive and Negative Affect Schedule 
Questionnaire (PANAS)44 Survey to measure an individual’s positive and negative affect Week 3 Weekly 53 302

State-Trait Anxiety Inventory (S-STAI)45 Survey to assess trait anxiety in individuals Week 3 Weekly 55 314

SEMA3
Context and Mood Survey EMA survey to collect data on an individual’s context 

(location) and mood Week 1 Thrice Daily 63 11526

Step Goal Survey EMA survey to determine an individual’s daily step goal Week 1 Daily 61 3852

Fitbit

ECG An electrocardiogram (ECG) is a test that measures the 
electrical activity of the heartbeat Week 1 Arbitrary 15 73

SpO2 Blood oxygen saturation (SpO2) is the percentage of your 
blood that’s saturated with or contains oxygen Week 1 Daily 27 1274

Respiratory Rate Summary Breathing rate, also known as respiratory rate, is the number of 
breaths you take per minute. Week 1 Daily 44 3000

Estimated Oxygen Variation Estimated oxygen variation (EOV) is an approximation of the 
changes in your blood oxygen saturation levels Week 1 2-Minute 71 2009637

VO2 max VO2 max is a measure of the maximum amount of oxygen the 
body can utilize during exercise Week 1 2-Day 71 4854

Nightly (Computed) Temperature Skin temperature variation from a 3-day baseline temperature, 
measured during nighttime Week 1 Daily 67 3568

Wrist Temperature Skin temperature is the temperature on the skin’s surface, 
measured during nighttime at regular intervals Week 1 3-Minute 61 4372238

Stress Score Stress score estimates how the body responds to stress based on 
heart rate, sleep, and activity level data Week 1 Daily 36 1911

Distance Distance walked by an individual Week 1 3-Minute 68 3010529

Calories Number of calories burned by an individual Week 1 3-Minute 71 9675782

Sleep Sleep schedule, minutes asleep and awake, time spent in bed, 
time spent in each sleep stage Week 1 Daily 66 4141

Steps Number of steps walked by an individual Week 1 3-Minute 68 3010529

Exercise Types and duration of exercises performed by an individual Week 1 Arbitrary 69 3275

Active Minutes Time spent in activity calculated through metabolic 
equivalents (METs) Week 1 Daily 71 21609

Sedentary Minutes Time spent in sedentariness Week 1 Daily 71 7203

Time in Heart Rate Zones Time spent in the fat burn, cardio, or peak heart-rate zones Week 1 2-Day 71 4876

Altitude Number of floors climbed by the user Week 1 Arbitrary 71 81022

Heart Rate Variability Heart rate variability (HRV) is the variation of time between 
each heartbeat Week 1 5-Minute 44 225987

Heart Rate Heart rate is the speed of the heartbeat measured by the 
number of contractions of the heart per minute. Week 1  < 1-minute 69 48720040

Resting Heart Rate Resting heart rate is the number of times the heart beats per 
minute when at rest Week 1 4-Day 71 12362

Profile Demographic details about an individual N/A N/A 70 70

Badge Rewards earned for completing daily and lifetime milestones Week 1 Arbitrary 71 902

Journal Entries (Mood) Manual mood entries after mindfulness sessions Week 1 Arbitrary 46 118

Mindfulness EDA Electrodermal activity (EDA) responses are small changes in 
the sweat level of the skin Week 1 <1-Minute 39 16070

Mindfulness Goals An individual’s goal number of mindfulness sessions to achieve Week 2 Arbitrary 46 30

Mindfulness Sessions Mindfulness sessions can help the individual track and 
understand the effects of mindfulness practice Week 1 Arbitrary 44 143

Table 2. The three data modalities in the LifeSnaps Dataset: Surveys, SEMA3, and Fitbit data, accompanied by 
data types, a short description, and related statistics.

https://doi.org/10.1038/s41597-022-01764-x
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round upon request. The mood choices include happy, rested/relaxed, tense/anxious, tired, alert, and sad, while 
an option neutral is added at the beginning of the first round upon request.

Surveys data. This modality includes approximately 1 K participants’ responses to various health, psychological 
and demographic surveys administered via Mailchimp, an e-mail marketing service (https://mailchimp.com/). 
Surveys have the benefit of accurately capturing complex constructs which would otherwise be unattainable, 
such as personality traits, through the usage of validated instruments. A validated instrument describes a survey 
that has been “tested for reliability, i.e., the ability of the instrument to produce consistent results and validity, 
i.e., the ability of the instrument to produce correct results. Validated instruments have been extensively tested 
in sample populations, are correctly calibrated to their target, and can therefore be assumed to be accurate43.

Apart from the entry and exit surveys discussed above, namely demographics, PAR-Q, IPIP, TTM, and 
BREQ-2, participants received weekly e-mails asking them to complete two surveys: the Positive and Negative 
Affect Schedule Questionnaire (PANAS)44, and the State-Trait Anxiety Inventory (S-STAI)45. For more details 
on the administered surveys, refer to Table 2.

Data acquisition monitoring. During the study, we adopted various monitoring processes that automati-
cally produce statistics on compliance. If a participant’s Fitbit did not sync for more than 48 h, we would send an 
e-mail to the participant with a reminder and a troubleshooting guide, while also informing the research team. 
Also, if a participant’s response rate in the SEMA3 app fell below 50%, the researchers would get notified to ping 
the participants to try and get them back on track. Finally, survey completion rates and e-mail opens and clicks 
were also monitored for the entry and exit surveys to ensure maximum compliance. Re-sent e-mails were sent 
every Tuesday to those participants who did not open their start-of-the-week e-mail on Monday to remind them 
to complete their weekly surveys.

Data preprocessing. Certain preprocessing steps were required to ensure data coherence as indicated 
below:

Modality-agnostic user ID. For linking the three distinct data modalities, namely Fitbit, SEMA3, and surveys data, 
we assign a 2-byte random id to each participant, which is common across all modalities to replace modality-specific 
user identifiers. This modality-agnostic user identifier enables data joins between different modalities.

Time zone conversion. Given the geographically-distributed nature of our study, we also need to establish a 
common reference time zone to facilitate analysis and between-user comparisons. Due to privacy consider-
ations, we cannot disclose the users’ time zones or their UTC offset. Hence, we convert all data of sub-daily 
granularity from UTC to local time. Specifically, concerning Fitbit data, only a subset of types are stored in UTC 
(see Table 3), as also verified by the Fitbit community (https://community.fitbit.com/t5/Fitbit-com-Dashboard/
Working-with-JSON-data-export-files/td-p/3098623). These types are converted to local time based on the par-
ticipant’s time zone, as declared in their Fitbit profile. Similarly, we convert SEMA3 and survey data modalities 
from the export timezone to local time using the same methodology. We also consider Daylight Saving Time 
(DST) during the conversion, since all recruitment countries follow this practice at the time of the study.

Translations. Due to the participants’ multilingualism, the exported Fitbit data, specifically exercise types, are 
exported in different languages. To this end, and with respect to the users’ privacy, we translate all exercise types 
to their English equivalent based on the unique exercise identifier provided.

Tabular data conversion. To facilitate the reusability of the LifeSnaps dataset, additionally to the raw data, we 
convert Fitbit and SEMA3 data to a tabular format to store in CSV files (see later for code availability). During 
the conversion process, we read each data type independently and perform a series of processing steps, including 
type conversion for numerical or timestamped data (data are stored as strings in MongoDB), duplicate elimi-
nation for records with the same user id and timestamp, and, optionally, aggregation (average, summation, or 
maximum) for data types of finer than the requested granularity.

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8Week 0

Setup

Consent Form

EMAs EMAs EMAs EMAs EMAs EMAs EMAs EMAs

Demographics
Survey

PAR-Q Survey STAI Survey

PANAS Survey

BREQ Survey

IPIP Survey

TTM Survey

STAI SurveySTAI SurveySTAI Survey STAI Survey STAI SurveySTAI Survey

PANAS Survey PANAS Survey PANAS Survey PANAS Survey PANAS Survey PANAS Survey

Week 9

EMAs

STAI Survey

PANAS Survey

BREQ Survey

TTM Survey

Fitbit Data

Fig. 4 Time flow of the 9-week study.
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Surveys scoring. Similarly, to facilitate the integration of the survey data, we provide, additionally to the raw 
responses, a scored version of each survey (scale) in a tabular format (see later for code availability). Each survey 
has by definition a different scoring function as described below:

IPIP. For the IPIP scale, we follow the official scoring instructions (https://ipip.ori.org/new_ipip-50-item-scale.htm).  
Each of the 50 items is assigned to a factor on which that item is scored (i.e., of the five factors: (1) Extraversion, (2) 
Agreeableness, (3) Conscientiousness, (4) Emotional Stability, or (5) Intellect/Imagination), and its direction of 
scoring (+ or −). Negatively signed items are inverted. Once scores are assigned to all of the items in the 50-item 
scale, we sum up the values to obtain a total scale score per factor. For between-user comparisons, we also add a 
categorical variable per factor that describes if the user scores below average, average, or above average with regard 
to this factor conditioned on the user’s gender.

TTM. For the TTM scale, each user is assigned a stage of change (i.e., of the five stages: (1) Maintenance, (2) 
Action, (3) Preparation, (4) Contemplation, or (5) Precontemplation) based on their response to the respec-
tive scale. Regarding the Processes of Change for Physical Activity, each item is assigned to a factor on which 
that item is scored (i.e., of the 10 factors: (1) Consciousness Raising, (2) Dramatic Relief, (3) Environmental 
Reevaluation, (4) Self Reevaluation, (5) Social Liberation, (6) Counterconditioning, (7) Helping Relationships, 
(8) Reinforcement Management, (9) Self Liberation, or (10) Stimulus Control). Once scores are assigned to all 
of the items, we calculate each user’s mean for every factor, according to the scoring instructions (https://hbcr-
workgroup.weebly.com/transtheoretical-model-applied-to-physical-activity.html).

BREQ-2. For the BREQ-2 scale, each item is again assigned to a factor on which that item is scored (i.e., of the 
five factors: (1) Amotivation, (2) External regulation, (3) Introjected regulation, (4) Identified regulation, (5) 
Intrinsic regulation). Once scores are assigned to all of the items, we calculate each user’s mean for every fac-
tor, according to the scoring instructions (http://exercise-motivation.bangor.ac.uk/breq/brqscore.php). We also 
create a categorical variable describing the self-determination level for each user, namely the maximum scoring 
factor.

PANAS. For the PANAS scale, each item contributes to one of two affect scores (i.e. (1) Positive Affect Score, 
or (2) Negative Affect Score). Once items are assigned to a factor, we sum up the item scores per factor as per 
the scoring instructions (https://ogg.osu.edu/media/documents/MB%20Stream/PANAS.pdf). Scores can range 
from 10 to 50, with higher scores representing higher levels of positive or negative affect, respectively.

Type Daily Granuarity UTC Local

ECG +

SpO2 +

Respiratory Rate Summary +

Estimated Oxygen Variation +

VO2 max +

Nightly (Computed) 
Temperature +

Wrist Temperature +

Stress Score +

Distance +

Calories +

Sleep +

Steps +

Exercise +

Active Minutes +

Sedentary Minutes +

Time in Heart Rate Zones +

Altitude +

Heart Rate Variability +

Heart Rate +

Resting Heart Rate +

Badge +

Journal Entries (Mood) +

Mindfulness EDA +

Mindfulness Goals +

Mindfulness Sessions +

Table 3. The export time zone of different Fitbit data types: some types are exported in UTC, while others in 
local time. Time zone does not apply to daily granularity data types.
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S-STAI. For the S-STAI scale, we initially reverse scores of the positively connotated items, and then total the scor-
ing weights, resulting in the STAI score (the higher the score the more stressed the participant feels) as per the scor-
ing instructions (https://oml.eular.org/sysModules/obxOML/docs/id_150/State-Trait-Anxiety-Inventory.pdf).  
To assign some interpretation to the numerical value, we also create a categorical variable, assigning each user 
to a STAI stress level (i.e., of three levels, (1) below average, (2) average, or (3) above average STAI score). Note 
that due to human error, the S-STAI scale was administered with a 5-point Likert scale instead of a 4-point one. 
During processing, we convert each item to a 4-point scale in accordance with the original.

Privacy considerations. Before the start of the study, we made a commitment to the participants to protect 
their privacy and sensitive information. Therefore, we thoroughly anonymize the dataset under publication. In 
the process, we adhere to the following principles: (i) minimizing the probability for successful re-identification of 
users by real-world adversaries, (ii) maximizing the amount of retained data that are of use to the researchers and 
practitioners, (iii) abiding by the principles and recommendations of GDPR in regards to the handling of personal 
information, and (iv) following the established anonymization practices and principles.

We strive to maintain k-anonymity22 of the dataset - ensuring that every user is indistinguishable from at 
least k-1 other individuals. Prior to anonymization, data are stored on secure university servers and proprietary 
cloud services. According to GDPR, when participants withdraw their consent, their original data are removed, 
while consent is valid for two years unless withdrawn. Since anonymized data are excluded from the GDPR 
regulations, they can be stored indefinitely.

We initially remove the identities of the participants such as full names, usernames, and email addresses, 
and substitute them with a 12-byte random id per user (https://www.mongodb.com/docs/manual/reference/
method/ObjectId/). Furthermore, we discard completely (or almost) the parameters that are extremely identify-
ing but are of limited value to the recipients of the dataset, including ethnicity, country, language, and timezone. 
We also exclude or aggregate some of the physical characteristics of users, namely age, height, weight, and health 
conditions.

Handling quasi-identifiers. By quasi-identifiers we imply non-time-series parameters that can be employed 
for re-identification. For the anthropometric parameters that cannot be disclosed unmodified, the aggregated 
versions were released instead. We choose the ranges not just to maintain the anonymity of the dataset but 
also for them to reflect the real-world divisions. Thus, we split participants into two age categories: below 30, 
i.e., young adults, and the rest. In a similar manner, we withhold the height and weight of the participants and 
release BMI instead. To protect the users who may have the outlier values for this parameter, we form 3 distinct 
BMI groups: < = 19, > = 25, and > = 30 for underweight, overweight, and obese individuals respectively. The 
participants’ gender (in the context of this study, gender signifies a binary decision that is offered by Fitbit) is the 
only quasi-identifier that is released unaltered. Based on the quasi-identifiers that are present in the release ver-
sion of the data (gender, age, and extreme values of BMI) we show that our dataset achieves 2 to 12-anonymity, 
depending on the “strength” of the adversary we consider.

Threat model. To ensure that the anonymity requirements are met, we need to verify that a realistic adversary 
cannot re-identify the participants. For instance, if the attacker knows that, say, John Smith who participated 
in the experiment took exactly 12345 steps on a given day, they would easily de-anonymize him. No possible 
anonymization (except, perhaps, perturbing the time-series data with noise, hence hindering their usability) can 
preserve privacy in that case.

Instead, we consider a realistic yet strong threat model. Suppose, the adversary obtained the list of all the 
participants in the dataset and found their birth dates from public sources as depicted in Fig. 5. Moreover, the 
attacker stalked all the users from the list online or in public places and learned their appearances and some of 
their distinct traits, e.g., very tall, plump, etc. For the privacy of LifeSnaps to be compromised it is enough for 
the adversary to de-anonymize just a single user. Therefore, we protect the dataset as a whole by ensuring the 
anonymity of every individual. If the attacker utilizes only the definite quasi-identifiers (gender and age), our 
dataset achieves unconditional 12-anonymity. Since we do not disclose the height and weight of the participants, 

Fig. 5 In the threat model we consider, the adversary obtained a list of all the participants in the dataset, 
found their age, and learned their appearances. They aim to link the individuals (or a single person) back to 
their aggregated data. Since we do not release height and weight, the physical appearances of the users are 
significantly less beneficial for de-anonymization. LifeSnaps is 12-anonymous under the normal threat model 
and at least 2-anonymous under the strongest one.
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the attacker may not directly utilize the observations of physical states (column “Note” in Fig. 5) of the users 
for de-anonymization. Suppose, the attacker wants to make use of the appearances and associate them with the 
released BMI. Since BMI is a function of height and weight, they need to estimate both attributes in order to 
calculate it (Eq. 1). Suppose, the adversary is able to guess the parameters with some error intervals, say, ±5 kg 
for weight and ±5 cm for height. The final error interval for BMI can be calculated according to the error prop-
agation (Eq. 2).

=BMI
weight
height (1)2

ε =
∆

+
∗ ∆weight

weight
height

height
2

(2)
BMI

For instance, for a person of 170 cm and 70 kg, while BMI 24⌊ ⌋ = , the error interval I contains 8 integer 
values, I = {21, 22, 23, 24, 25, 26, 27, 28}. In fact, the list of possible values for BMI stretches nearly from under-
weight to obese. It is evident that due to the error propagation the adversary is not able to glean significant 
insights into the users. Even if the attacker is able to perfectly estimate the height and weight of the participants, 
i.e., with no error interval, they can diminish the anonymity factor k at most down to 2

Data records
Data access. The LifeSnaps data record is distributed in two formats to facilitate access to broader audiences 
with knowledge of different technologies, and researchers and practitioners across diverse scientific domains:

 1. Through compressed binary encoded JSON (BSON) exports of raw data (stored in the mongo_rais_an-
onymized folder) to facilitate storage in a MongoDB instance (https://www.mongodb.com/);

 2. Through CSV exports of daily and hourly granularity (stored in the csv_rais_anonymized folder) to facili-
tate immediate usage in Python or any other programming language. Note that the CSV files are subsets of 
the MongoDB database presenting aggregated versions of the raw data.

The data are stored in Zenodo (http://zenodo.org/), a general-purpose open repository, and can be accessed 
online https://doi.org/10.5281/zenodo.682668246. We have compressed the dataset to facilitate usage, but the 
uncompressed version exceeds 9GB. The data can be loaded effortlessly in a single line of code, and loading 
instructions are provided in the repository’s documentation. In the remainder of this section, we analyze the 
structure and organization of the raw data distributed via MongoDB JSON exports.

The MongoDB database includes three collections, fitbit, sema, and surveys, containing the Fitbit, SEMA3, 
and survey data, respectively. Each document in any collection follows the format shown in Fig. 6 (top left), con-
sisting of four fields: _id, id (also found as user_id in sema and survey collections), type, and data. The _id field 
is the MongoDB-defined primary key and can be ignored. The id field refers to a user-specific ID used to identify 
each user across all collections uniquely. The type field refers to the specific data type within the collection, e.g., 
steps (see Table 2 for distinct types per collection). The data field contains the actual information about the doc-
ument, e.g., steps count for a specific timestamp for the steps type, in the form of an embedded object. The con-
tents of the data object are type-dependent, meaning that the fields within the data object are different between 

Document Format Survey Collection Example Document Format

Fitbit Collection Example Document Format

SEMA Collection Example Document Format

Fig. 6 A generic document format for all three collections in MongoDB (top left), along with example 
document formats for each collection, fitbit, sema, and surveys.

https://doi.org/10.1038/s41597-022-01764-x
https://www.mongodb.com/
http://zenodo.org/
https://doi.org/10.5281/zenodo.6826682


1 1Scientific Data |           (2022) 9:663  | https://doi.org/10.1038/s41597-022-01764-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

different types of data. In other words, a steps record will have a different data structure (e.g., step count, times-
tamp, etc.) compared to a sleep record (e.g., sleep duration, sleep start time, sleep end time, etc.). As mentioned 
previously, all timestamps are stored in local time format, and user IDs are common across different collections.

Fitbit collection. Regarding the Fitbit collection, it contains 32 distinct data types, such as steps or sleep (see 
Table 2 for the full list). When it comes to the contents of individual Fitbit data types, researchers should refer to 
the official company documentation (https://dev.fitbit.com/build/reference/web-api/) for definitions. To assist in 
future usage, we also provide a UML diagram of the available Fitbit data types and their subtypes in our dataset 
in Fig. 7. Figure 6 presents the structure of an example document of the fitbit collection (bottom right).

Surveys collection. Concerning the survey collection, it contains six distinct data types, namely IPIP, BREQ-2,  
demographics, PANAS, S-STAI, and TTM. Each type contains the user responses to the respective survey questions 
(SQ), as well as certain timestamp fields (See the top right document in Fig. 6 for an example BREQ-2 response). 
Specifically, each SQ is encoded in the dataset for ease-of-use purposes and CSV compatibility. For example, 
the first SQ of the BREQ-2 scale, i.e., I exercise because other people say I should, is encoded as engage[SQ001]. 
For decoding purposes, we provide tables mapping these custom codes to scale items in the GitHub repos-
itory (https://github.com/Datalab-AUTH/LifeSnaps-EDA/blob/main/SURVEYS-Code-to-text.xlsx)  
and Zenodo. User responses to SQs are shared as is without any encoding. Each survey document also contains 
three timestamp fields, namely “submitdate” (i.e., timestamp of form submission), “startdate” (i.e., timestamp of 
form initiation), and “datestamp” (i.e., timestamp of the last edit in the form after submission; coincides with the 
“submitdate” if no edits were made). To facilitate usage, in the folder scored_surveys, we provide scored versions 
of the raw survey data in CSV format, as discussed in the Data Preprocessing section.

SEMA collection. Finally, regarding the sema collection, it contains two distinct data types, namely Context 
and Mood Survey, and Step Goal Survey. Each EMA document contains a set of fields related to the study and 
the survey design (e.g., “STUDY_NAME”, “SURVEY_NAME”), as well as the participant responses to the EMA 
questions, and timestamp fields. Figure 6 (bottom left) presents an example of the “Context and Mood Survey”, 

Afib ECG Readings
reading_id: string
reading_time: date
wire_id: string
result_classification: string
device_app_version: string
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Fig. 7 A UML diagram for the Fitbit modality, including all available data types and subtypes.
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where the participant is at home (i.e., “PLACE”: “HOME”) and they are feeling tense (i.e., “MOOD”: “TENSE/
ANXIOUS”). Apart from the pre-defined context choices, participants are also allowed to enter their location 
as a free text, which appears in the “OTHER” field. Concerning the timestamp fields, each document contains 
the following: “CREATED_TS” (i.e., the timestamp from when the survey was created within the SEMA3 
app), “SCHEDULED_TS” (i.e., the timestamp from when the survey was scheduled, e.g., when the participant 
received the notification), “STARTED_TS” (i.e., the timestamp from when the participant started the survey), 
“COMPLETED_TS” (i.e., the timestamp from when participant completed the survey), “EXPIRED_TS” (i.e., the 
timestamp from when the survey expired), “UPLOADED_TS” (i.e., the timestamp from when the survey was 
uploaded to the SEMA3 server). Note that if a participant completes a scheduled EMA, then the EXPIRED_TS 
field is null, otherwise, the COMPLETED_TS field is null. Only completed EMAs have valid values in the STEPS 
field for the Step Goal Survey or the PLACE and MOOD fields for the Context and Mood Survey.

Use cases. We built the LifeSnaps Dataset with the goal to serve multiple-purpose scientific research. In this 
section, we discuss indicative use cases for the data (see Fig. 8), and hope that researchers and practitioners will 
devise further uses for various aspects of the data.

Among others, the LifeSnaps dataset includes data emerging from diverse vital signals, such as heart rate, 
temperature, and oxygen saturation. Such signals can be of use to medical researchers and practitioners for gen-
eral health monitoring, but also to signal processing experts due to their fine granularity. When it comes to coarse 
granularity data, the dataset includes a plethora of physical activities, sleep sessions, and other data emerging 
from behaviors related to physical well-being. Such data can be exploited by researchers and practitioners within 
the sleep research and sports sciences domain to study how human behavior affects overall physical well-being. 
On top of that, the LifeSnaps dataset is a rich source of mood and affect data, both measured and self-reported, 
that have the potential to empower research in the domains of stress monitoring and prediction, and overall 
mental well-being. Additionally, the diverse modalities of the dataset allow for exploring the correlation between 
objectively measured and self-reported mental and physical health data, while the psychological and behav-
ioral scales distributed can facilitate research in the behavioral sciences domain. On a different note, incentive 
schemes, such as badges, and their effect on user behavior, user compliance, and engagement with certain system 
features could be of great interest to human-computer interaction experts. Finally, handling such sensitive data 
can fuel discussions and efforts towards privacy preservation research and data valorization.

Technical Validation
Fitbit data validity has been extensively studied and verified in prior work47–49. To this end, this section goes 
beyond data validity to discuss data quality issues emerging from the study procedure, as presented in the previ-
ous section. Specifically, we provide details on user engagement and compliance with the study, and we delineate 
data completeness and other limitations that we have encountered during the process.

User engagement. Surveys. Throughout both study rounds, the users received reminder e-mails, as dis-
cussed earlier, for weekly survey completion. The open and click rates after e-mail communication vary, as shown 
in Fig. 9. Overall, during the first round, the compliance is higher than that of the second, while in both study 
rounds, there is a sharp decrease between weeks 2–4 concerning open, click, and response rates. The open and 
click rates follow approximately the same trend and they exhibit a high percentage (~80% and ~65%, respectively) 
in the beginning and end of the study batches and a medium percentage between weeks 5–7 (~70% and ~50%, 
respectively). The response rate shows a steep drop from week 1 to week 3–4 in both rounds plummeting almost 
to 30% at its lowest level (from more than 90% in the beginning), and settling around 40–50% for the second 
month of each round. Note that the response rate is sometimes higher than the open or click rates, due to resent 
reminder e-mails (discussed earlier in the data collection monitoring section). An interesting finding is that 

Fig. 8 Indicative use cases for the LifeSnaps dataset.
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reminder e-mails seem to be more effective in the first weeks of the study, where the response rate is higher than 
the open and click rates, but have diminished effectiveness later on, where the response rate is similar to the click 
rate excluding resents.

SEMA3. We also study and quantify user engagement through the lens of the SEMA3 EMA responses. The 
SEMA3 average user compliance for both rounds is 43%, calculated from the SEMA3 online platform. Moreover, 
Fig. 10 shows the different compliance levels in terms of response rate across participants. Contrary to related 
studies of a similar scale17, where there is a significant decline in the number of users responding to the daily 
and weekly surveys, and the response rate distribution closely resembles an exponential decay curve, in our 
experiment, nearly 1 in 3 participants replied to more than 75% of the EMA surveys (bottom subfigure). In the 
top subfigure, we also notice that numerous participants exhibited extremely high levels of engagement (>90%). 
Additionally, Fig. 11 depicts when the participants preferred to answer the SEMA3 EMAs surveys throughout 
the week. It seems that the most common time slot was during the weekdays between 10 to 12 am.

Regarding the completeness of the SEMA3 responses, participants engaged in various activities throughout 
their daily routine during the study. The Context and Mood EMA responses (Figs. 12 and 13) give us a peek 
into the participants’ lifestyles, given that data are collected in the wild. During both rounds, the most frequent 
response to where our participants were located was HOME, which is unsurprising during the Covid-19 pan-
demic, with the second most frequent response being either WORK or SCHOOL. During the first study round, 
the answer OUTDOORS appears more often than in the second one, which might be partly explained because 
the first round occurred during summer in Europe, when the weather is more friendly for outdoor activities. 
Regarding emotions, interestingly, TIREDNESS is a response that usually appears at the beginning of the week 
and SADNESS appears on Mondays or in the middle of the week. On the same note, the participants seem to 
use HAPPY more often on Fridays or during the weekends. HAPPY was also selected an outstanding amount of 
times during Christmas vacations.

Fitbit. Having discussed user engagement with regard to surveys and EMAs, from here onward we explore 
compliance with the Fitbit device. The heatmaps in Fig. 14 display the Fitbit data availability for both rounds, 
incorporating the distance, steps, and estimated oxygen variation Fitbit types, while the ones in Fig. 15 depict 
all available Fitbit Types throughout the study dates of both study rounds. Although there is a declining trend 
throughout the study dates in both study batches, the participants’ engagement is still outstanding, producing 

Fig. 9 Mail communication open and click rates (excluding resent e-mails) and response rates (overall) for first 
(left) and second (right) study round.

Fig. 10 SEMA3 EMAs response rate bar plot (up) and histogram (bottom) for both rounds of the experiment.
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valuable data as the mean user engagement rises to 41.37 days (42.71 days in the first round and 40.03 in the sec-
ond round), corresponding to 73% of the total study days. The standard deviation is 16.67 days and the median 
is 49.5 days in the first round, while in the second round the standard deviation and median are 17.39 and 40.13 
days respectively. An interesting finding is a decline in Fitbit usage in the first days of the year (second round), 
and a resumption to normal use shortly after. We also notice that the number of users who wear their Fitbit 

Fig. 11 When did our participants answer the SEMA3 EMAs?.

Fig. 12 Context (left) and mood (right) EMA responses per day for the first study round. Every date shown in 
the figure is a Monday.

Fig. 13 Context (left) and mood (right) EMA responses per day for the second study round. Every date shown 
in the figure is a Monday.
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device during the night is smaller compared to during the daytime, which is in accordance with prior work, 
revealing that almost 1 out of 2 users do not wear their watch during sleeping or bathing50.

Summing up, in Fig. 16, all collection types, namely the synced Fitbit data, the Step Goal and Context and 
Mood SEMA3 questionnaires, and the surveys data are compared, visualizing the complete picture of the user 
engagement throughout both rounds. In both study batches, we did not lose a significant number of participants 
from the beginning to the end, contributing to the completeness and quality of the LifeSnaps dataset. Note that 
while Fitbit and SEMA3 engagement waned with time, survey participation peaked at the end of the study. We 
presume this is due to the repeated e-mails unresponsive participants received for extracting and sharing their 
Fitbit data accompanied by survey completion reminders. It is worth mentioning that the participants could 

Fig. 14 Fitbit data availability throughout the first (left) and second (right) study round.

Fig. 15 All Fitbit data types available throughout the first (left) and second (right) study rounds.

Fig. 16 User engagement (Fitbit, SEMA3 and Surveys collections) throughout the first (left) and second (right) 
study round.
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respond to the surveys throughout the week after receiving the notification e-mail, which is why the survey data 
appear more spread and low through the study dates during both study rounds.

Digging a little bit into the data, we can visualize (Fig. 17) the average steps (left) and the number of exercise 
sessions (right) for all participants combined for both study batches. We can clearly see that there is a significant 
increase in the number of steps around 5PM during the weekdays assuming that most people were leaving their 
jobs at that time. As expected, the steps start to appear later in the morning during the weekends compared to 
the weekdays and Saturday seems to be the day of the week with the largest mean number of steps. Regarding the 
time and day of the week, our participants preferred to exercise, on Mondays and Saturdays the sessions appear 
more spread throughout the daytime. Similarly, with the steps pattern, there is a rise in the number of exercise 
sessions starting from 5PM during the weekdays and an outstanding elevation on Saturdays.

Note here that the majority of published datasets do not provide information on user engagement. On the 
contrary, we discuss user engagement patterns for all three modalities (i.e., Fitbit, SEMA, and surveys) sepa-
rately, reaffirming the quality and validity of the LifeSnaps dataset. Additionally, according to Yfantidou et al.51, 
70% of health behavior change interventions (user studies) utilizing self-tracking technology have a sample size 
of fewer than 70 participants, while 59% has a duration of fewer than 8 weeks. In accordance with these findings, 
the median sample size of the relevant studies discussed in the introduction is a mere 16 users, while a significant 
number of these datasets are constrained to lab conditions. Such comparisons highlight the research gap we aim 
to close and the LifeSnaps dataset’s importance for advancing ubiquitous computing research.

Limitations. The LifeSnaps study experienced similar limitations to previous personal informatics data col-
lection studies both in terms of participant engagement and technical issues.

As discussed earlier, while participant dropout rates are low (7%), there exists a decreasing trend in com-
pliance over time across data modalities. Despite the data collection monitoring system in place and the sub-
sequent nudging of non-compliant participants, we still encountered a ~18% decrease in SEMA3 compliance 
(~24% in the first round and ~11% in the second round), ~18% decrease in Fitbit compliance (~24% in the first 
round and ~12% in the second round), and approximately 5% decrease in survey communication open rates 
between entry and exit weeks. Note here that a small percentage of non-compliant participants with Fitbit is due 
to allergic reactions participants developed to the watch’s wristband and reported to the research team. At the 
same time, waning compliance with the smartwatch is expected due to well-documented novelty effects lasting 
from a few hours to a few weeks52. Nevertheless, such compliance rates are still higher than similar studies of 
the same duration53. To better understand how non-compliant participants can be engaged, differing incentive 
mechanisms should be put in place to gauge how such participants would respond.

Independent of compliance issues, we also encountered a set of technical limitations that were out of our 
control:

Device incompatibility. One participant (~1%) reported full incompatibility of their mobile phone device 
with the SEMA3 app. To decrease entry barriers, we did not restrict accepted operating systems for the 
users’ mobile phones. Despite SEMA3 supporting both Android and iOS, there are known limitations with 
regard to certain mobile phone brands (https://docs.google.com/document/d/1e0tQvFSnegpJg2P5mf-
MU7N7R9D3gTZatzxGmVy-EkQE/edit). Additionally, multiple participants reported issues with notifications 
and SEMA3 operation. All received troubleshooting support in accordance with the official manual above. There 
were no compatibility issues reported for the Fitbit device.

Corrupted data. While processing the data, we encountered corrupted data records due to either user or sys-
tem errors. For instance, there exists a user weighing 10 kg, which is an erroneous entry that also affects the 
calculation of correlated data types such as calories. Concerning system errors, we noticed corrupted dates (e.g., 
1 January 1980 00:00:00) for a single data type in the surveys collection, which emerged from the misconfig-
uration of the LimeSurvey proprietary server. Also, we encountered outlier data values (e.g., stress score of 0) 
outside the accepted ranges. We leave such entries intact since they are easily distinguishable and can be handled 
on a case-by-case basis. Finally, we excluded swimming data because they portrayed an unrealistic picture of the 

Fig. 17 Pattern analysis: When and how much have the participants walked (left) and exercised (right).
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users’ activity, i.e., false positives of swimming sessions in an uncontrolled setting, possibly due to issues with the 
activity recognition algorithm.

Missing data. Missing Fitbit data emerge either from no-wear time or missing export files. No-wear time is 
related to participants’ compliance and has been discussed previously (see Figs. 14 and 15). Missing export files 
most likely emerge from errors in the archive export process on the Fitbit website and are outside of our control. 
For instance, while we have resting heart rate data for 71 users, we only have heart rate data -the most common 
data type- for 69 users (~3% missing). Similarly, as seen in Table 2, we encountered unexpectedly missing export 
files for the steps (~3%), profile (~1%), exercise (~3%), and distance (~4%) data types. Missing SEMA3 and 
survey data emerge solely from non-compliance.

External influences. We encouraged the participants to continue their normal lives during the study without 
scripted tasks. Such an approach embraces our study’s “in the wild” nature but is more sensitive to external influ-
ences. For instance, we assume a single time zone per participant (taken from their Fitbit profile), as described in 
our methodology. However, if a participant chooses to travel to a location with a different time zone during the 
study, this assumption no longer holds. Based on our observations from the SEMA3 provided time zones, this 
only applies to ~3% of participants and for a limited time period. Additionally, the study took place during the 
Covid-19 pandemic and its related restrictions, which might have affected the participants’ behavior. However, 
we see this external influence as an opportunity for further research rather than a limitation.

Lack of documentation. While Fitbit provides thorough documentation for its APIs, there is no documenta-
tion regarding the archive export file format, with the exception of the integrated README files. To this end, it 
was impossible to define the export time zone per Fitbit data type without analysis. To overcome this challenge, 
we compared record-by-record the exported data with the dashboard data on the Fitbit mobile app, which are 
always presented in local time. Table 3 is the result of this comparison.

Usage Notes
While we provide the LifeSnaps dataset with full open access to “enable third parties to access, mine, exploit, 
reproduce and disseminate (free of charge for any user) this research data” (https://ec.europa.eu/research/partic-
ipants/docs/h2020-funding-guide/cross-cutting-issues/open-access-data-management/open-access_en.htm), 
we encourage everyone who uses the data to abide by the following code of conduct:

•	 You confirm that you will not attempt to re-identify the study participants under no circumstances;
•	 You agree to abide by the guidelines for ethical research as described in the ACM Code of Ethics and Profes-

sional Conduct54;
•	 You commit to maintaining the confidentiality and security of the LifeSnaps data;
•	 You understand that the LifeSnaps data may not be used for advertising purposes or to re-contact study 

participants;
•	 You agree to report any misuse, intentional or not, to the corresponding authors by mail within a reasonable 

time;
•	 You promise to include a proper reference on all publications or other communications resulting from using 

the LifeSnaps data.

Code availability
All code for dataset anonymization is available at https://github.com/Datalab-AUTH/LifeSnaps-Anonymization. 
All code for reading, processing, and exploring the data is made openly available at https://github.com/Datalab-
AUTH/LifeSnaps-EDA. Information about setup, code dependencies, and package requirements are available in 
the same GitHub repository.
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