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Abstract—Early-stage detection of botnets during their spread-
ing phase, before any attack, is fundamental to IoT security.
Recently introduced lightweight memory networks represent the
state of the art in this domain. However, they require a central
system to capture and analyze all traffic in the network, which
may not always be feasible in real-world scenarios.

In this paper, we introduce a decentralized and collaborative
alternative, in which the IoT devices themselves are responsible
for this task without any central observer or coordinator. Qur
results show that the performance of this novel approach is
competitive with similar centralized solutions, despite the lack
of a global view of the network at any participating device.

We also provide an extensive analysis of the security limitations
of our fully-decentralized detection system. We identify the
potential exploits that an attacker may attempt to perform, assess
their impact on the IoT network as well as propose and evaluate
effective countermeasures.

Index Terms—Security and Privacy, Botnet Detection, Indus-
trial IoT (IIoT), Device-to-Device Communication, Deep Learn-
ing.

I. INTRODUCTION

ToT devices have been growing exponentially in the last few
years thanks to their usefulness and the growth of Industry 4.0.
As a result of this growth, the number of IoT connections is
expected to reach 83 billion by 2024!.

This growth brought a spotlight on IoT security. These
devices are an interesting target for malicious actors due to
their large number and weak security measures. Most IoT
devices are constantly connected to the Internet yet use weak
default configurations, including weak passwords and unen-
crypted communications.> Moreover, their low computational
resources limit the use of heavy security solutions that are
employed on more powerful computers.

Due to these issues, attackers have been successfully in-
fecting unsecured IoT devices and using them to perform
Distributed Denial of Service (DDoS) on a scale not possible
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before. A notable example is the DDoS attack on DNS
provider Dyn, one of the largest attacks known, which reached
a bandwidth of 1.2 Tbps [1]. This attack was performed using
the Mirai botnet, which infects IoT devices (turning them into
“bots”) and spreads across local and Internet connections to
form a network of compromised devices, i.e. the botnet.

Given this threat, a lot of research has been put into
detecting botnet-initiated attacks at the network level to filter
the malicious traffic and identify the infected IoT networks.
However, this kind of solution can only mitigate ongoing
attacks. Very few works have instead focused on preventing
these attacks by identifying and isolating the botnets during
their spreading phase when they are still recruiting new bots
and before they initiate any attack.

Most of the approaches focusing on this early-stage detec-
tion challenge are based on shallow ML models [2]. More
recently, some deep learning approaches have been suggested
[3], [4], the most recent and effective being LiMNet [4].
LiMNet introduces long-term device memories to preserve
information about previous packets exchanged by each device,
not only to better classify malicious packet flows but also
to perform device-level classification tasks. However, this
approach requires a central system to capture and sequentially
analyze each individual packet exchanged in the network, as
shown in Figure la. Unfortunately, this may be impossible in
highly-decentralized networks, where communications happen
in a peer-to-peer fashion or where no single entity is responsi-
ble for the networking infrastructure. Furthermore, even when
technically possible, centralized monitoring may be infeasible
due to the sheer volume of traffic generated by IoT devices.

To tackle these limitations, in this paper, we propose
Metasoma®, a supervised deep learning system for early-stage
botnet detection that employs decentralized, collaborative in-
ference. Metasoma extends LiMNet and adapts the underlying
techniques to a decentralized environment. Instead of a central
monitor and memories database, each device runs a local
instance of Metasoma, which monitors the local traffic and
constructs partial memories based on the behavior of each peer
in its visible subset of the network, as shown in Figure 1b.

Metasoma is unique in its novel approach to decentral-
ized collaborative inference: these partial, local memories are
shared between devices according to a peer-to-peer commu-
nication protocol, and then merged with the local ones by
the receivers, thus boosting their knowledge and improving

3Metasoma is the upper body part of ants, used for several cooperative
tasks like transporting food and defending from outsiders.
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Fig. 1. Comparison of centralized and decentralized botnet detection systems. LiMNet employs a central monitoring system that captures all traffic and builds
complete device memories. In Metasoma each device builds partial local memories that are gossiped with other devices to achieve collaborative detection.

the detection accuracy. These memories are produced, merged
and then classified by machine learning components that are
jointly trained on a single objective. Thus, to the best of our
knowledge, Metasoma is the first deep learning model that
achieves decentralized inference by sharing internal model
representations across a peer-to-peer network.

Contributions. The contributions of this paper can be
summarized as follows:

o We develop Metasoma, which to the best of our knowl-
edge is the first supervised early-stage botnet detector
based on a fully-decentralized deep learning inference
model.

o We perform an extensive security analysis of Metasoma,
identifying its potential weaknesses and implementing
suitable mitigations.

o We experimentally evaluate the performance of Meta-
soma and the efficacy of its security measures, with
the results demonstrating the potential of these novel
techniques to effectively protect IoT networks.

Outline. The rest of the paper is organized as follows.
Section II introduces key concepts used by Metasoma. Section
III presents the building blocks of the system, while Section IV
analyses the security of Metasoma, discussing potential attacks
and mitigations. Section V presents extensive experimental
analysis of the system, including security mitigations. Section
VI presents related work. Finally, Section VII provides some
concluding remarks.

II. BACKGROUND

Before delving into the architecture of Metasoma, we review
certain concepts from the fields of deep learning and dis-
tributed systems that play crucial roles in its design: memory
networks, normalizing flows, and gossip protocols.

A. Memory Networks

Memory networks, first presented in [5], have been intro-
duced to the field of botnet detection in [4] and play a key role
in the architecture of LiMNet and, by extension, Metasoma.

Memory networks are built around a central long-term
memory storage, which encodes all facts known to the machine
learning model and makes them available for downstream
inference. Different deep learning components can act on this
storage, adding and modifying memories to encode new facts
or querying it for relevant information to complete a task.

In their original formulation, memory networks are com-
posed of four components: input feature map, generalization
layer, output feature map, and response layer. The input
feature map converts new incoming information to an internal
representation that is passed to the generalization layer, which
updates the internal memory of the model. The resulting input
representation and the updated memory are combined by the
output feature map into an output representation. The latter is
used by the response layer to generate the final model output.

B. Normalizing Flows

From a high-level perspective, a deep learning model can
be seen as a function fy : © — z, parameterized by a set of
trainable parameters ¢, which maps an input distribution X to
an output distribution Z. Normalizing flows [6] are a family
of deep models that enjoy additional properties, the most
important being invertibility, that is, the ability to construct an
inverse transformation fj : z — x. This, together with other
properties, ensures that normalizing flows can be efficiently
used to map back and forth between the probabilities densities
of the input and output distributions (X and Z2).

Normalizing flows are often used to map a complex input
distribution X to a simpler, typically normal (hence the name)
distribution Z. Once trained, this mapping can be used to
estimate the probability density of X in a certain point, or
in other words the likelihood of a certain input x to belong
to the distribution X. The inverse mapping can be used in
generative contexts, allowing efficient sampling of values of
X with desired likelihoods, by first sampling from the well-
known distribution Z and then applying f, L

In this work, normalizing flows will be used in Section IV to
estimate the probability distribution of device memories, thus
limiting the ability of malicious actors to tamper with them.
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C. Gossip Protocols

Gossip protocols [7] are a family of network communication
techniques based on the phenomenon of gossiping in social
circles. They are extremely efficient in disseminating and
aggregating information over a network in a decentralized
fashion and have been used for many different tasks [8], [9].

In broad terms, in any gossip protocol, each device peri-
odically shares its information with a randomly-selected peer.
Upon receiving information from a peer, each node combines
it with its own local information, thus increasing its own
knowledge, which it will then share at the next occasion.

To the best of our knowledge, Metasoma is the first work
that employs lightweight gossip protocols to enable decen-
tralized and collaborative inference. However, they have been
extensively explored in the context of decentralized training
[9]-[11], where they have been shown to be robust to adverse
conditions, such as suboptimal network topologies and imbal-
anced data distributions [12].

III. ARCHITECTURE
A. Target Scenarios

IoT devices are employed in a wide variety of applications,
ranging from wearable devices to smart homes to the “Industry
4.0” [13]. Metasoma targets scenarios such as smart grids,
smart cities, smart factories and smart farms. These Industrial
IoT (IIoT) settings come with a specific set of challenges
and opportunities. On one hand, the large amount of devices
deployed, and the volume and velocity of their communica-
tions makes centralized real-time analysis infeasible. On the
other hand, these deployments typically happen in relatively
controlled environments, with well-defined workloads and
administered by either a single entity or a small consortium.
These characteristics make it possible to create inexpensive
overlay networks and deploy models that were trained ahead
of time on domain-specific network traces.

Metasoma exploits these properties, as it performs de-
centralized inference by sharing, in a peer-to-peer fashion,
memories that are produced by a deep learning classification
model trained ahead of time, in a centralized environment,
using network traces obtained from the same environment
where it will be deployed.

B. System

Metasoma aims to achieve botnet detection in a decentral-
ized, collaborative fashion. Each IoT device in the network
thus needs to participate in the protocol, by analyzing the
portion of the network traffic that it is aware of in search
of clues, and then sharing and merging its information with
other peers to obtain a more complete picture of the network.

Thus, Metasoma contains two detection pathways: a local
one, extracting and classifying behaviours based on the net-
work traffic visible to the device, and a collaborative one,
based on sharing and combining the information extracted
by the former. The following sections will detail these two
pathways, which are summarized in Figure 2.
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Fig. 2. A high-level view of the Metasoma process within a device. The top
row of components represent the local detection flow, while the bottom row
represents the collaborative aspect. The forgery detector will be introduced in
Section IV.
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Fig. 3. Structure of LiMNet with two device classifiers and two packet
classifiers. Colored boxes are: blue) memory representations; green) packet
features; orange) device features; grey) trainable networks. Dashed numbered
boxes are: 1) input feature map; 2) generalization layer; 3) memory; 4) output
feature map; 5) response layer. Image reproduced from [4]

C. Local Bot Detection based on Packet Headers

For the local detection component, Metasoma employs the
LiMNet architecture [4]. It consists of a memory network,
which extracts features from the header of each packet and
uses them to update the internal representation (i.e., memory)
of the source and destination devices. This representation is
then used to perform node or packet classification tasks to
identify malicious behaviors.

LiMNet is very suitable for our use-case, as it has been
shown to be not only very accurate in detecting botnets, but
also much lighter than previous state-of-the-art models in
terms of RAM and CPU pressure. In fact, it is shown that
the entire model can fit in the private cache of a CPU core
and can process thousands of packets per second while pinned
to an individual core, without resorting to large batch sizes,
multi-threading, or specialized Al accelerators. It can thus run
effectively on low-power IoT devices without hampering their
normal functions or power consumption [4].

Figure 3 presents a high-level view of the LiMNet ar-
chitecture. The input feature map extracts key source node
(x;), destination node (x;), and packet information (e;j)
from the packet header. The generalization layer is composed
of two recurrent cells that transform the previous memory
representation of the source node h! (resp. target node h§-) and
turn it into a new representations h{ " (resp. h’*"), taking as
input the extracted node and packet features and the previous
memory representation of the target node (resp. source node).

These updated memory representations can then be directly
used by ML classifiers to perform node classification, or they
can be concatenated to the input packet features to feed packet
classification models.
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The original LiMNet is a centralized model that collects all
packets in the network and thus builds memory representations
based on complete information. In Metasoma, on the other
hand, the model is run individually by each node with only a
partial, local set of packets as input, and thus cannot provide
the same level of accuracy.

D. Collaborative Bot Detection based on Memory Gossiping

To overcome this issue, Metasoma introduces memory shar-
ing using gossip protocols, as introduced in Section II.

More specifically, in Metasoma, at regular intervals, each
IoT device chooses a random subset of its local memories
and sends them to another randomly-chosen IoT device. By
only sending a fixed-size subset of the memories, the network
bandwidth required by the protocol is kept constant, even when
the number of memories stored by a device increases. While
memories are typically small (between 128 and 256 bytes
each), further savings can be achieved by compressing them
before sending, exploiting the fact that ML models do not
typically need the full 23 bits mantissa provided by single-
precision floating point numbers [14].

The receiving device will then decompress the memories
and merge them with its local ones. As each device is only
aware of local traffic, and thus can only directly know the
existence of nodes in its neighbourhood, each device stores
memories for a different subset of the whole network. As
such, the sender must tag each memory vector with the IP
address of the node it represents, thus allowing the receiver
to correctly match it with local data. If the IP address of
a shared vector does not exist in the local memory of the
receiver, then it is directly added to it. The receiver thus learns
information regarding a device it was not aware of before. If,
on the other hand, the IP address matches a local memory,
the local and shared information need to be merged, so that
both are preserved and the receiver can have a more complete
knowledge of the device with that IP, based not only on the
packets that were visible to the receiver, but also those that
were visible to the sender, or to any other node that than
shared its information with the sender. Thus, information is
transitively propagated through the network.

Merging the local and shared representations for a device
is a non-trivial task, because the two representations were
built based on the device behavior during a potentially long
period of time. The information stored in the two memories
may be partially distinct (such as packets that were visible to
the sender but not to the receiver or vice-versa) and partially
overlapping (such as information that a third node gossiped
to both the sender and the receiver). Furthermore, the time
dimension is partially lost, as it is not possible to know when,
or how many times, each memory was updated before being
shared.

We thus employ a trainable ML component, which can learn
the best transformation to perform during the merge operation.
In our experiments, we use a single recurrent cell, with the
exact same structure as those used in the memory updater,
thus enabling the merger to mimic the type of “reasoning”
employed by the updater. The recurrent cell transforms the old

local memory of the receiver into the new combined memory,
by taking as input the memory received via gossip.

E. Training Methodology

1) ML Tasks: While Metasoma is designed to perform
inference in a decentralized setting, it still requires a cen-
tralized training procedure, in which the model is exposed
to labelled network traffic including honest and malicious
behavior belonging to all the classes of devices and botnets
that the model should handle during inference. This supervised
learning approach is made possible by the semi-controlled
nature of IIoT environments and intuitively can provide better
performance than unsupervised approaches.

We jointly train Metasoma on both device classification
and packet classification tasks. The latter captures whether a
specific communication is honest or not, and allows Metasoma
to recognize that even a malicious node may participate in
honest communications. On the other hand, the device labels
are “sticky”: as our datasets do not include recovery scenarios,
once a device has participated in a malicious flow, it is marked
as malicious for the remainder of the network trace.

This pushes both the local memory updater and the merger
component of the model to preserve the memory of previous
misbehaviors, thus limiting the ability of a patient attacker to
interleave honest and malicious communications in order to
bypass detection. Furthermore, this long-term memorization
strategy has a substantial effect on which kind of attacks a
malicious entity, aware of the implementation of Metasoma,
may perform to bypass or weaponize the botnet detection
system itself. This will be discussed in detail in Section IV.

2) Training Procedure: At its heart, Metasoma is a
sequence-to-sequence recurrent model. Recurrent models are
typically applied on datasets containing large numbers of sepa-
rate sequences, some of which are used for training and others
for evaluation. However, botnet detection datasets typically
consist of a single long network trace. Naively feeding this to
the model would cause issues of: 1) scalability, as no hardware
parallelism is exploited by training on multiple sequences at
the same time, and 2) vanishing gradients, as so many inputs
are processed in the forward pass that the contributions of the
earliest ones are completely lost during backpropagation.

A well-established solution to this problem is truncated
backpropagation through time (p-BPTT) [15], a technique
that consists of splitting the long input traces into multiple,
partially overlapping windows, each of which is treated as
a separate, independent input sequence for the model. Thus,
multiple sequences can be combined into a batch for efficient
training. Furthermore, this procedure allows us to set aside a
random subset of these traces, to use as test set.

As already mentioned, Metasoma is unique in the way
that representation vectors used internally by the model are
randomly gossiped across the network. While this is the
key to enable effective decentralized inference, it poses an
additional, novel challenge: how to train the memory merger.
This component must be trained in conjunction with the
classifiers and updater, as its presence can potentially affect
how the representations are built by the updater and interpreted
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by the classifiers. However, the merger itself is affected by the
gossiping procedure, and specifically by the frequency and
amount of memories gossiped.

Thus, in order to perform the end-to-end training, each
training sequence is augmented by interleaving the original
network packets with memory gossiping packets. These are
obtained by simulating the gossiping behaviour of the nodes
involved in that specific training sequence, considering the
hyperparameters controlling the gossiping behavior, and also
considering the topology of the overlay network used for
memory gossiping (described in Section IV).

Due to the complexity of the training procedure and the
limited avenues for parallelization, training Metasoma is a
relatively time-consuming task, even if the size of the model
itself, in terms of number of parameters, is extremely small.
However, this training procedure can be performed on spe-
cialized high-performance hardware, and only the small fully-
trained model needs to be deployed on the actual IoT devices,
which only perform lightweight inference operations.

F. Memory Retention

Having each IoT device store the latest memory of each peer
ever known to them (either directly or via gossiping) is not
feasible. First, it would not scale to large networks or those
were devices are dynamically added or removed over time.
Second, it would complicate the recovery process of infected
devices. These would be typically taken offline and cleaned,
before being reinstated in the network. However, other devices
may still hold memories that flag the now-healthy devices as
malicious, and may thus refuse to interact with them.

Both issues can be mitigated by having the IoT devices
delete memories that have not been updated for a certain
period of time, which indicates that the corresponding device
is no longer active in the network. This leads to a tradeoff,
where a more aggressive deletion strategy can substantially
reduce the memory footprint of Metasoma in very dynamic
networks and simplify the reintegration of cleaned devices,
while at the same time potentially removing useful information
for the detector and allowing malicious nodes to attempt slow
attacks.

However, as explained in Section III-E, during the training
process, the model learns to perform its predictions based on
a limited view of the network trace, and therefore the impact
of withholding stale information is limited. Furthermore, the
reintegration of cleaned devices can be performed very quickly
by assigning them a new identity, so that new memories are
built for them when they join the network. The memories
linked to their previous identities are then deleted at a later
point, once the inactivity threshold is reached.

IV. SECURITY ANALYSIS

Metasoma aims to improve the security of existing appli-
cations on a decentralized IoT network by identifying botnets
as they attempt to spread across the devices. However, due
to its decentralized nature, Metasoma is itself an application
running on the network, and any vulnerability in its design or
implementation could be exploited by malicious entities who

are aware of its deployment in the network. In this section,
we analyze the security of Metasoma discuss the feasibility of
potentially malicious attacks, and design mitigations to render
those attacks infeasible.

A. Threat Model

As discussed in Section III-A, Metasoma is targeting IIoT
with predefined organizations and network administrators. We
assume that each organization has a certificate authority (CA)
that validates the identities of devices in its network and issues
certificates. We distinguish two types of actors: routers and
IoT devices. We assume that the majority of routers and IoT
devices are honest in the sense that they follow the Metasoma
protocol. In addition, we assume that malicious (i.e., infected)
routers can drop and forge network packets. Moreover, we
assume that malicious (i.e., infected) IoT devices can:

o simulate arbitrary packets as inputs to their local Meta-
soma instances, which leads to non-factual local memo-
ries based on communications that did not happen;

« withhold (fully or partially) information from the system,
such as by not inputting certain packets to their local
Metasoma instances (producing incomplete memories), or
by preventing the gossiping of certain memories produced
by their local Metasoma instances;

o directly forge, store and gossip arbitrary memories in
their local Metasoma instances, disregarding the model’s
normal flow and the trained parameters.

Furthermore, we assume that each honest device can only
see its own inbound and outbound traffic and thus can only
input to its local Metasoma instance. So, each honest device
does not know about the communications that do not involve it
directly. This leads to the result that any collusion or commu-
nication between infected devices is invisible to honest devices
and to the overall Metasoma system, as the local Metasoma
instances on the infected devices may be fully compromised.
Based on this threat model, we identify three scenarios in
which malicious actors that are aware of Metasoma can exploit
it in their favor.

B. Scenario 1: Preventing Packets Forgery

a) Attack Scenario: A malicious router with honest de-
vices in its sub-network may try to drop the network packets
from such devices. In addition, it may try to forge them
by changing packet headers (e.g., destination) which would
impersonate other devices. In this section, we focus on forging
packet headers. We give a detailed analysis of forging packet
contents (i.e., memories) in Section IV-C.

b) Attack Impact: This attack would prevent Metasoma
from detecting the ongoing spreading of a botnet, and would
thus directly undermine the security of the entire IoT network.

¢) Mitigations: To mitigate this attack, all packets must
be authenticated and encrypted. In this way, any change to
the contents, or any attempt to impersonate a different device,
can be immediately detected. Both authentication and encryp-
tion can be performed in a relatively lightweight manner by
employing asymmetric cryptographic protocols. Each device
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is assigned both a public and a private key. By signing all
outgoing packets with the private key, impersonation and
tampering attempts by malicious intermediaries become im-
possible. By encrypting the packets with the public key of the
receiver, intermediaries are prevented from even looking at the
contents to gain information and, for example, choose to drop
packets containing incriminating memories. Given the fact that
IIoT deployments are typically controlled by either a single
administrating entity or a small consortium (as discussed in
Section III-A), it is possible for the organizations’ certificate
authorities to validate devices identities and generate certifi-
cates associated with each device public key, thus preventing
malicious entities from generating new “throwaway” keys to
prevent detection.

C. Scenario 2: Preventing Memory Forgery

a) Attack Scenario: A malicious node, or set of nodes,
that are engaging in malicious communications with honest
devices in the network, may try to prevent Metasoma from
detecting the threat. They may do so by forging and gossiping
to their victims specific memories which, once merged with
the factual memories stored on those devices, would lead
to a misclassification of the malicious node activities, thus
preventing detection of the botnet.

b) Attack Impact: This attack would prevent Metasoma
from detecting the ongoing spreading of a botnet, and would
thus directly undermine the security of the entire IoT network.

c) Mitigations: As discussed in Section III-E, the use
of sticky node labels during training should ensure that, if
the local memory indicates that a certain device is malicious,
this information will be preserved after the memory is merged
with a gossiped one, no matter what other information the
latter adds to the result. However, as this property is enforced
by the training process, it only applies when all the memories
involved follow the distribution experienced during training.
That is, it only applies when all the memories are obtained
through the normal application of the model to the packet
flow. Memories that are directly forged by a malicious model
are not bound to the same distribution and therefore may be
optimized for the specific goal of erasing factual information
about a target device stored in the memory of a victim.

Based on these observations, we propose to pair Metasoma
with an anomaly detector trained on the memories produced
during training. More specifically, we employ the memories
produced during the last few iterations of the training proce-
dure, when the weights of the model, and thus the memories it
produces, have stabilized. As the training dataset includes both
malicious and honest traffic, these memories will encompass
both categories. However, as no attacker is forging memories
during the training process, all the memories produced in
that stage will belong to the distribution produced by the
model, and for which the model should be able to guarantee
the “stickyness” property. During decentralized inference, the
anomaly detector would analyze any gossiped memory before
it is processed by the merger, and would discard any anomaly,
i.e. any memory which does not appear to belong to that same
distribution, and could thus represent a forgery.

We employ a simple normalizing flow model, more specif-
ically a Masked Autoregressive Flow [16]. This type of
normalizing flow is particularly effective in density estimation
tasks and is thus well suited for our use case. Given a memory
as input, the forgery detector will output the density of the
training memory distribution in that point of the space of
possible memories. Should this density be below a certain
threshold, the forgery detector would discard the input memory
as too unlikely to appear in normal conditions, and thus poten-
tially forged. By tuning this decision threshold, it is possible
to achieve different trade-offs between blocking all forged
memories (avoiding false negatives) and ensuring no honest
memories are wrongly rejected (avoiding false positives). We
evaluate these trade-offs in Section V-E.

D. Scenario 3: Preventing Eclipse Attacks

a) Attack Scenario: A malicious node M can take down
an honest node H by forging packets/memories to incriminate
it of malicious behavior. It may gossip a memory vector that,
once merged with the vectors in honest nodes, will make
the classifiers in these honest nodes classify H as malicious.
This is possible without any tinkering with the Metasoma
memories, by just faking the receipt of one or more malicious
packets from the target honest device. Memories produced in
this way are indistinguishable from honest memories even for
the forgery detector, as they are correctly produced by the
memory updater model, although based on a packet that was
never actually sent.

So, in order to manipulate the behavior of an honest node
H, a malicious node will perform an eclipse attack, possibly
by colluding with other malicious nodes. An eclipse attack
aims at surrounding an honest node H with malicious nodes
as neighbors. So, node H will behave based on the information
it receives from the surrounding malicious nodes which allows
them to manipulate its actions.

b) Attack Impact: This attack would not directly help
a botnet spread further into the network, and could have the
opposite effect of alerting network operators of the presence of
a threat in the system. However, an attacker whose goal is not
to spread its botnet and infect additional devices, but rather
to take down said devices, could accuse honest devices of
being malicious as a way to deliver targeted Denial of Service
attacks against those devices. This would be particularly
effective in the presence of automated threat response systems
designed to immediately isolate devices that are reported to
be misbehaving.

c) Mitigations: In order to mitigate this attack, we need
to stop malicious nodes from incriminating honest nodes. For
this purpose, we keep a sparse network overlay and only allow
neighbors in the overlay to incriminate each other. In this
way, an attacker who manages to take control of a device
will only be able to take down honest devices in its direct
neighborhood, greatly reducing the chances of a denial of
service. This method also helps a potential recovery system
to identify all potentially infected devices and restore them.

This approach is based on a key assumption that good
Metasoma performance can be achieved without gossiping
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memories too often, so that each time a gossiping operation
is performed, it is feasible to transfer heavier data using a
TCP connection, rather than sending a single lightweight UDP
message. This assumption is backed up by the experiments
shown in Section V-D.

To maintain a very sparse connectivity pattern (and thus a
small “blast radius” where an intruder can take down honest
devices), we maintain two overlay networks: a “functional”
overlay network connecting those IoT devices that need to
be connected for maintaining the proper function of the
deployment (e.g., a lightbulb must be connected to its relevant
switch), and a “gossiping” overlay network, which has a
random structure and, therefore, it is optimal to spread mem-
ories in the fastest way. Both networks are built via peering
operations, and cryptographic proofs are used to ensure that
any node is able to prove that it is connected to another node
in one of the overlays.

When a neighbor of a node A gossips its memory of node
A, it will attach to it the proof (e.g., a signed token) it received
from node A during peering, thus proving its right, as a
neighbor, to update that memory. When another node, not
connected to A, receives from one of its peers the memory
of node A, it will store it along with the proof that came with
it. If said node later receives a new memory for node A, with
a different proof (and thus a different “source”), it will merge
those two memories and will then store the merged memory
along with the originals and their two proofs. In this way, the
node can prove that it merged them in an honest way when
gossiping this memory. Thus, with this mechanism, the only
way a malicious device can affect the memory of node A to
wrongfully accuse it is by being a neighbor of node A.

Thus, in order to target a specific honest node H, a
malicious entity needs to take control of one of its neigh-
bors, which could be either: i) a node that is functionally
connected to H, or ii) a node that is connected to H in the
“gossiping” network. To minimize the chance of the malicious
entity succeeding, we need to ensure that the structure of the
gossiping network cannot be easily predicted or manipulated
by malicious devices. On the other hand, the structure of the
functional network cannot be altered, as it is necessary for
the devices to fulfill their tasks. It is worth noting that taking
control of a neighboring node of the target node is out of our
scope as a malicious node could exploit vulnerabilities in the
software that the neighbor runs (e.g., web server, firmware,
etc.).

Neighbors Selection. The aim of the neighbors’ selection
protocol is to selectively connect to honest nodes to avoid
eclipse attacks. One fundamental observation to defend against
eclipse attacks is the randomness of selecting neighbors. In
other words, if node M (a malicious node) wants to connect
to node H (an honest node), node M will be targeting node
H, so the connection request will not be random. So, there is a
need to check the randomness of the request. Therefore, each
device in Metasoma generates a private salt ¢*, which can
be any random number. This salt can optionally be dynamic,
in the sense that the device can choose to change salt every t
seconds, where ¢ is a time window selected by the device itself.
Additionally, Metasoma employs a public salt ¢ that changes

every t seconds (e.g., 30 seconds in our implementation).
In addition, ¢ needs to be verifiably random [17]. For this
purpose, we use drand*, a distributed randomness beacon. In
addition, to make the process challenging, each node will have
two lists of neighbors: the accepted ones and the chosen ones.
The accepted list consists of the nodes that choose the peer to
be a neighbor while the chosen list consists of the nodes that
the peer chooses to be neighbors with. For the latter, we use
the following distance® function:

d(nodeM,nodeH, ¢) = hash(node M) ® hash(nodeH + ¢)
ey
We rely on the exclusive OR distance since it is a widely
adopted metric in structured peer-to-peer systems, such as
the networks adopting Kademilia-based distributed hash tables
[18] (e.g., BitTorrent). It is worth noting that similar protocols
were applied in public distributed ledger technology such as
IOTA 2.0 Auto Peering Protocol [19].
When node M wants to connect to node H, first, it keeps
a list of potential nodes that it can connect to, sorted in
ascending order by their distance. If node H is at the top of
the list, node M sends the peering request. When a node
receives a peering request, it measures d(nodeH, nodeM, ¢..).
If the distance is lower than the distance of an existing
neighbor, the new neighbor is added and the farthest neighbor
is dropped. So, if an attacker wants to perform an eclipse
attack on another node, it needs to mine the private salt ¢,
of the victim node H to be in its neighborhood. It is worth
noting that the accepted and the chosen list should be limited
in size (to allow dropping the farthest nodes). We study the
effect of the neighborhood size in Section V-F.

V. EXPERIMENTAL RESULTS
A. Datasets

The original centralized LiMNet [4] was evaluated on
two datasets: MedBIoT [2] and Kitsune [20]. These datasets
were selected because they gather network traces from the
early phases of infection which is the focus of LiMNet. The
MedBIoT dataset [2] contains network traces including the
communication between the bots and the C&C servers of three
botnets: Mirai, Bashlite/Gafgyt, and Torii. The botnets were
injected in a medium-size network of 83 devices. Some devices
are emulated and others are real including smart locks, fans,
switches, and light bulbs. The Kitsune dataset [20] contains
network traces of early infection phases by Mirai botnet. The
latter was injected in a small-size network that consists of
3 PCs and 9 IoT devices, including a thermostat, a baby
monitor, a webcam, low-cost security cameras, and doorbells.
The details of the datasets are summarized in Table 1.

As explained in Section III-E, each dataset is split into
multiple subsequences. 85% of these sequences are employed
in the training process, while the remaining 15% are used as
a test set to compute the scores reported in this section.

“https://drand.love/

STt is worth noting that the distance represents a numerical (i.e., XOR)
distance between hashes (i.e., hash(nodeM) is the SHA-256 hash of the
public key of node M) and not the geographic distance
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TABLE I
DATASETS SUMMARY
Dataset Devices | Packets Botnets
MedBIoT | 83 17,845,567 | Mirai, Bashlite, Torii
Kitsune 12 764,137 Mirai
TABLE 11
AUROC SCORES ON THE KITSUNE DATASET
AUROC
Model D packet mal. | device mal | device atk.
LiMNet 32 99.7 81.2 82.2
Metasoma | 32 99.2 80.1 81.6
LiMNet 64 99.8 82.0 82.9
Metasoma | 64 99.2 81.4 82.4

B. Hyperparameters

In all the experiments, we maintain hyperparameters similar
to those presented as the best in [4]. More specifically, we
employ the GRU recurrent cell in both the memory updater
and merger components, and we test with memories of size
D = 32 and D = 64. For the p-BPTT training process,
we use a sequence length of 5000 and a stride of 500,
which ensures that every packet is seen in different positions
of several sequences. For the gossiping component, unless
otherwise noted, the frequency at which each device performs
one round of gossip is set to 5 seconds. The maximum number
of memories shared in one round is capped at 8, in order to
limit the bandwidth required by the protocol.

C. Effectiveness of Metasoma in Botnet Detection

To understand the impact of decentralization on the effec-
tiveness of Metasoma in botnet detection, we compare it with
LiMNet®, which uses an identical architecture to build and
classify memories, but does so in a centralized environment.
We preserve as much as possible the same conditions as in
[4], thus evaluating our system on three binary classification
tasks: whether a certain packet belongs to a malicious com-
munication flow, whether a certain node is malicious (i.e. has
been infected) and whether it is currently under attack (i.e., a
malicious device is trying to spread its botnet to it).

However, our setup presents one major difference with
respect to the original LiMNet paper: as explained in Section
III-E, we employ “sticky” device labels, which put greater
emphasis on longer-term memorization of malicious or poten-
tially malicious behaviors.

Similarly to what reported in [4], we also find that the
MedBIoT dataset, despite its wide variety of botnets and large
number of devices, represents a too simple challenge for deep
learning models such as LiMNet and Metasoma, which all
achieve over 99% AUROC in all three tasks. We therefore
report our detailed results on the Kitsune dataset in Table II,
comparing LiMNet and Metasoma.

LiMNet has access to a complete and ordered stream
of all network packets exchanged in the network, and thus
the memories it uses for predictions always contain all the

SWe used the source code that LiMNet authors made available on Github
(https://github.com/lodo1995/LiMNet)

AUROC
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Fig. 4. Effect of memory gossiping frequency on the detection performance
of Metasoma.

available information on the target devices. In Metasoma, on
the other hand, the local memories in each device are built
from incomplete information. While the gossiping protocol
eventually leads to all exchanged packets being included in
the memories of all devices, this process discards potentially
important information about the global order of the packets
and adds noise and non-determinism to the memories. Thus,
it is expected for Metasoma to perform worse than LiMNet,
being a drop in prediction quality the price to pay to achieve
decentralization.

Our experimental results show that this price is relatively
small. This validates the feasibility of exchanging internal
model representations to perform decentralized inference and
means that Metasoma can be deployed in IIoT settings to
replace centralized botnet detection solutions, without com-
promising the security of the devices.

Note that the results for LiMNet in Table II are lower than
those originally reported in [4]. This is due to our use of
“sticky” device labels, which puts greater emphasis on longer-
term memorization of malicious or potentially malicious be-
haviors, as explained in Section III-E. This makes the task
of device classification impossible for models that do not
memorize past behavior and makes it more challenging even
for LiMNet.

D. Effect of Gossiping Frequency on Detection Accuracy

Metasoma relies heavily on memory gossiping to propagate
information between the devices, ensuring that each of them
has access to a relatively complete and relatively up-to-date
representation of its peers. We therefore investigate how the
performance of Metasoma is affected by the frequency at
which each node gossips its memories to a random peer.

Figure 4 shows how the AUROC scores of Metasoma on
the three tasks presented in Section V-C at different gossiping
frequencies (1, 3, 5, 10 and 15 seconds). It can be seen that
the performance increases dramatically up to a frequency of
5 seconds, especially for the device-level tasks, which are
more sensitive to the staleness of the memories. The packet
classification task, on the other hand, has access to the features
of the packets, and thus is less dependent on the exact contents
of the memories. Further increasing frequency does not lead
to any meaningful gains, and actually results in measurable, if
minor, losses when approaching 1 second. This may be due to
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Fig. 5. Probability of the forgery detector accepting forged memories and
rejecting honest memories for different choices of the acceptance threshold.

an increase in the level of noise introduced in the memories
by the frequent merging operation, as the model may not be
capable of properly handling large amounts of overlapping
information received from multiple sources at high frequency.

This result indicates that Metasoma is unlikely to introduce
significant network overheads in an IoT deployment, as it does
not require a high communication frequency.

E. Effectiveness of Metasoma in Forged Memory Detection

To measure the effectiveness of the Normalizing Flow com-
ponent of Metasoma in detecting forged malicious memories,
we simulate a potential attacker who has access to the trained
memory merger component and classifier and has perfect
knowledge of the memories on the victim device.

More specifically, given a merger function merger : RP x
RP — RP, a classifier function cls : RP — [0,1] (where
0 is honest and 1 malicious), and a target memory h, the
attacker trains a model forger : h — h’ with the objective
of minimizing cls(merger(h,h’)), thus ensuring that any
malicious behavior that the victim had recorded in the memory
h is forgotten after the victim merges it with the memory A’
received from the attacker.

In our experiments, we use a simple 3-layers feed-forward
neural network as the forger, with all layers having size D,
ReLU activations in the hidden layers and hyperbolic tangent
activation in the final layer, the latter to match the activation
used by the recurrent units in Metasoma. We observe that this
model easily achieves a 99% effectiveness in producing false
negatives. That is, when fed a memory that Metasoma would
classify as representing a malicious device, in 99% of the cases
the forger outputs a new memory which, once merged with the
input memory, produces a result that is classified as a honest
device by Metasoma. This result is expected, as it is very easy
to manipulate the output of a machine learning model when its
weights are known and the inputs can be freely manipulated.

With this trained attacker, we then proceed to add our Nor-
malizing Flow-based forgery detector to Metasoma and evalu-
ate its effectiveness in identifying forged memories at different
probability density thresholds. The results are summarized in
Figure 5. Even when setting a very low threshold, which
ensures virtually no honest memories are rejected, only a small
fraction (around 0.2%) of forged memories are accepted. On
the other hand, if the threshold is raised to the point where all
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Fig. 6. Neighbourhood sizes: convergence analysis

forged memories are correctly identified, only around 2% of all
honest memories are wrongly discarded. These results indicate
that the forgery detector is extremely accurate, allowing the
threat of forged memories to be neutralized without severely
harming the gossiping protocol.

F. Effectiveness of the Eclipse Attack Mitigations

In order to evaluate the effectiveness of our proposed
mitigations to eclipse attacks and their effect on the network,
we have simulated our solution in a network of 1000 devices.
As explained in Section IV-D, each peer has two types of
neighbors: chosen and accepted. We have run our experiment
with different neighborhood sizes (i.e., 2, 4, 6, 8, and 10)
where each neighborhood size is divided equally between the
chosen and accepted neighbors. In addition, our public and
private salts change every 30 seconds.

a) Convergence: To analyze the effect of changing
neighborhood size on the network, we evaluate the network
convergence metric with different neighborhood sizes. In Fig-
ure 6, we show the convergence in terms of normalized average
number of neighbors over time. We observe that the peers have
on average a full neighborhood (i.e., chosen and accepted)
after 5 seconds. In other words, the peers quickly build their
neighborhoods. So, they stay connected and keep sending and
receiving memories regardless of the neighborhood size and
the identity of the actual peers in the neighborhood.

b) Link Survival: Since the neighbors selection algorithm
was proposed as a possible mitigation for the eclipse attack,
we evaluate the link survival in terms of probability over time.
In other words, we evaluate the probability of a link surviving
(i.e., persisting in a peer’s neighborhood) for a period of time.
We recall that our public and private salts change every 30
seconds which means that every peer’s neighborhood changes
every 30 seconds. In Figure 7, we see that after 30 seconds the
probability that a link survives is almost 0. So, if a node A is
connected to a node B in the first 30 seconds timeframe, the
probability that a node A stays in the neighborhood of node
B in the following 30 seconds is almost 0. In other words,
if a malicious node M wants to perform an eclipse attack
on node H, it needs to generate a hash that is closer than the
farthest node in node H neighborhood in less than 30 seconds.
It is an impractical attack because the search space is large,
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and the honest nodes could implement a trivial mitigation of
brute-forcing attacks by introducing a rate limit.

VI. RELATED WORK

The field of IoT botnet detection has gone through extensive
research in recent years. Existing solutions in this area can be
categorized based on several aspects: traditional vs machine
learning-based detection, centralized and decentralized archi-
tecture, and early-stage vs attack-stage detection.

There are two main research directions in centralized IoT
botnet detection: traditional and machine learning-based de-
tection. In traditional detection, several approaches [21], [22]
exploit graph theory for botnet detection since IoT botnets
frequently communicate with each other, thus building com-
munities. Community detection algorithms like the one shown
in [22] are proven to be effective in detecting botnets. Simi-
larly, other approaches [23], [24] exploit statistical features of
botnets, such as frequency of communication and ports used,
to detect botnets. Such approaches identify correlations among
bots to infer botnet affiliations.

Similarly, several approaches [4], [25]-[27] exploit network
traffic analysis in machine learning-based detection to iden-
tify infected nodes. These approaches feed ML models with
features of network packets such as source and destination
nodes, communication protocol, packet size, etc., to classify
packets and/or nodes as benign or malicious. For this purpose,
different ML techniques have been employed, including deep
autoencoders fed with statistical packet features [28] and
recurrent models fed with packet headers [25], [26]. Another
emerging direction in IoT botnets detection is the usage of
deep learning models in a federated learning setting like
the work in [27]. It relies on packet headers to detect IoT
botnets attacks by training local models and sharing the model
updates with a central server for aggregation. However, few
works have focused on early-stage botnet detection. The work
in [2] presents a dataset for botnet early-stage detection in
IoT. The authors evaluated the performance of simple ML
techniques such as k-Nearest Neighbors classifiers, decision
trees, and random forests in classifying packets as benign or
malicious. In the same line of research, the work in [3] used
recurrent models that were shown to be effective for early-
stage detection to classify packets based on low-dimensional
representations of network packet features.

Another research stream focuses on decentralizing botnet
detection solutions. The work in [29] decentralized the Peer-
Hunter community-based botnet detection algorithm [22] by
running it as a smart contract in the blockchain. In addition,
the work in [30], [31] leveraged blockchain to enhance col-
laborative threat intelligence in IoT. Furthermore, the authors
of [32] proposed a collaborative anomaly detection solution
with a focus on botnet detection. They developed their own
blockchain to collaboratively exchange threat intelligence and
train an extensible Markov model (EMM) based on consensus
among IoT devices.

Metasoma differs from the aforementioned approaches on
many levels. First, Metasoma focuses on classifying nodes,
packets, and attack status. However, it differs from [32] since it
is decentralized and it does not require a central entity. Second,
Metasoma is a lightweight model that can be deployed in IoT
devices with limited computational power, unlike the discussed
approaches that are based on heavy models or community
detection algorithms. Third, the blockchain-based approaches
(i.e., [29]-[32]) require IoT devices to run blockchain clients,
which adds communication and computational overhead to
devices. Metasoma reduces the communication overhead since
it has a limited number of neighbors at each point in time
and does not run consensus or other blockchain-related tasks.
Fourth, Metasoma does not use any trusted execution envi-
ronment unlike the work in [32] that uses TrustZone for key
management for their blockchain. Finally, Metasoma provides
a detailed security analysis of possible attacks and their
mitigations.

VII. CONCLUSION

This paper introduces Metasoma, which, to the best of
our knowledge, is the first decentralized, deep-learning based
approach for supervised early-stage botnet detection. Meta-
soma provides virtually the same detection capabilities as
previous state-of-the-art approaches while removing the need
for expensive and potentially unfeasible centralized monitoring
solutions. We also show how a smart attacker may try to
exploit the weaknesses of such a decentralized system, and
we design and evaluate mitigations to prevent these threats.
Overall, Metasoma provides a compelling alternative to ex-
isting solutions and will hopefully lead to the exploration of
novel research directions in the fight against botnets.

Metasoma opens a number of interesting future research
directions. In particular, it employs a relatively shallow archi-
tecture, with each component (updater, merger and classifier)
consisting of a single recurrent or dense layer. Better predic-
tion accuracy may be achievable by increasing the depth of one
or more of these components. This would come at the expense
of inference speed and size of the trained model, therefore
putting more strain on the limited resources of IIoT devices.
The design of deep models that are highly expressive and at
the same time resource-efficient is a very active research area.

Related to the previous issue is that of training time, which
has partially affected the breadth of experiments that we
performed. The use of deeper models would further exacerbate
this issue, and thus an interesting direction for future work
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consists of exploring more efficient training strategies for mod-
els with heterogeneous input sequences, such as Metasoma.

As already discussed in [4], there is a lack of suitable
datasets for this task in the academic community. Most botnet
detection datasets focus on the attack phase of the malware,
rather than on the initial spreading phase. The largest avail-
able dataset that focuses on botnet spreading, MedBIoT, is
unfortunately not challenging enough to allow meaningful
comparisons and to pinpoint the limitations of various deep
models. The collection of new datasets for this purpose should
be a priority of the research community, in order to foster the
development of novel techniques in the area.
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