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a b s t r a c t

Access control is a key service of any data management system. It allows regulating the access to
data resources at different granularity levels on the basis of access control models which vary on the
protection options they offer. The more powerful is the access control model in terms of protection
requirements, the more difficult is for security administrators to understand the effect of a set of access
control policies on the protected resources. This is further complicated within schemaless systems,
like NoSQL datastores, when fine grained access control policies are specified for data resources
characterized by heterogeneous structures. The lack of a reference data model and related manipulation
languages exacerbates this issue. To the best of our knowledge, a general approach to evaluate the
impact of access control policies on the protected resources within NoSQL systems is still missing. In
this paper, we start to fill this void, by proposing a data model agnostic approach, which, starting from
schemaless datasets protected by different discretionary access control models, derives a view of the
protected resources that points out authorized and unauthorized contents. Experimental results show
the approach efficiency even with large datasets.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Access control is among the major security services that are
urrently supported by RDBMSs and NoSQL datastores. For in-
tance, in RDBMSs access control has been enforced according
o a variety of models. These range from traditional ones, such
s discretionary, mandatory, and role-based models [1], to more
ecent proposals aimed at enforcing customized forms of data
rotection. For instance, the copious family of Purpose Based
ccess Control (PBAC) models (e.g., [2,3]), and the Attribute Based
ccess Control (ABAC) models [4,5], are getting growing popu-
arity. Discretionary (DAC) and role-based access control (RBAC)
as also been used within NoSQL datastores (e.g., MongoDB1 sup-
orts RBAC), whereas more recent work proposed the integration
f PBAC [6], context-based access control [7], and ABAC [8,9].
esearch proposals for RDBMSs and NoSQL datastores allow pro-
ecting the access to data resources up to the finest possible
ranularity (e.g., [9,10]). Although the majority of RDBMSs na-
ively enforce DAC at table level, the use of views allow reaching
iner granularity levels. Moreover, some commercial solutions
argeting RDBMSs, such as Oracle Virtual Private Database [11],
perate at fine grained level, achieving better scalability than
iews. As far as commercial NoSQL datastores are concerned, the
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majority operate at coarse grained level (e.g., MongoDB RBAC
operates at document collection level), whereas few systems
enforce access control at cell level (e.g., Accumulo).2

The protection options further increase when additional fea-
tures are considered, such as negative/ positive policies, policy
composition and conflicts resolution strategies, as well as policy
propagation criteria [12]. Considering the variety of data models,
access control models, and related configuration options, it can be
really hard for security administrators to understand the effects
of a set of access control policies on the data resources handled
by their systems.

As an example, let us consider a relational database db, and
a set Ps of access control policies (both positive and negative),
which have been specified to regulate the access to db data at
different granularity levels by a set of users Us. Any policy p of
Ps protects the access to: (i) the whole database db, or (ii) to a
able of db, or (iii) to a row, or (iv) to a cell of any db table. Let
us now assume that a set of policy composition options, conflicts
resolution strategies, and policy propagation criteria have been
specified for the policies in Ps. For instance, suppose that denials
take precedence has been selected as conflict resolution strategy.
Let us also assume that two policies p1 and p2 apply to a cell c
of tb, where p1 is a positive policy (i.e., p1 specifies a permit),
whereas p2 is a negative policy (i.e., p2 expresses an explicit
denial). Let us suppose that user u aims at accessing cell c at time
, and both p1 and p2 are satisfied at time t for u, causing a conflict.

2 https://accumulo.apache.org/.
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The conflict resolution strategy denials take precedence addresses
this issue by favoring the negative policy p2, which forbids the
access to c.

A security administrator, on the basis of the specified policies
and access control options, may wish to check which cells of a
table tb of db can be accessed by a user u at time t. The same
analysis could be repeated when different access control options
are specified, or at a different time. Any of these evaluations
requires checking all access control policies that regulate the
access to any cell of tb. Policies need also to be combined on the
asis of the specified access control options.3 Overall this analysis
esults into a complex task.

This issue is even more relevant within NoSQL databases, as
hese systems allow the management of heterogeneous schema-
ess data, possibly characterized by complex hierarchical struc-
ures. Depending on the specified access control options, policies
pecified for a resource r may affect the permit to access any finer
rained resource r’ included in r, whose access, in turn, could be
egulated by additional policies specified for r’. Deep hierarchical
structures complicate policy analysis requiring the composition
of access control policies specified for data resources at different
granularity levels. It is worth noting that data resources with
complex hierarchical structures are favored by different data
modeling patterns adopted for NoSQL systems (e.g., see [13]). For
instance, let us consider the data denormalization pattern [13],
which is counted among the best practices for data modeling [13].
Any denormalized resource dr is defined in such a way to embed
ocal copies of the data resources that are expected to be jointly
ccessed with dr. This modeling strategy favors very efficient data

analysis, since there is no need to perform costly join operations
as all data that need to be jointly accessed are included in a
single resource, at the cost of data resources with quite complex
structures.

Example 1. Let us consider a document oriented NoSQL database
of an e-shop, which keeps track, in separate collections, of doc-
uments representing: the ordered items, the shipping of the
ordered goods, and the customer profiles. Any order is stored in
a document that keeps track of: details related to the ordered
items, the customer who performed the purchase, and the pos-
sible use of a customer loyalty card. Fig. 1 shows two example
documents, serialized in JSON format, each specifying data related
to a purchase order. The considered documents have different
structures, as the first document describes a purchase achieved
using a customer loyalty card, whereas the second without any
card.

Due to the composite nature of denormalized data resources,
and the heterogeneity of the aggregated data, the access to any
aggregated data item could be regulated by multiple sets of access
control policies. For instance, referring to the JSON documents
in Fig. 1, we could assume that the access to any field that
refer to personal information (e.g., field phone) is regulated by
a dedicated set of policies. Policies can be specified for data
items at the finest supported granularity level (e.g., for email), or
for a composite element (e.g., for customer). Depending on the
specified set of access control options, the protection scope of the
policies specified for a composite field, could be extended to the
included sub-fields. For instance, policies specified for customer
may also affect the access to name and email. The hierarchical
structure of data resources favor scenarios where the access to
any item of a composite resource is protected by multiple sets of
policies specified at different granularity levels, which need to be
properly composed.

3 For instance, to determine whether a cell c can be accessed or not, it might
be necessary to check policies that apply to c, to the row rw that includes c, to
the table tb where rw is included, and to the database db that includes tb.
Fig. 1. Examples of purchase order documents.

Example 2. Let us consider again the scenario introduced in Ex-
ample 1 and let us assume that a set of policies have been defined
to allow the analysis of orders by analysts of a third party com-
pany who aim at identifying purchasing trends. More precisely,
a set of collection level policies grant read access to collection
orders, whereas a set of document level policies restrict the access
authorization to a selection of orders documents which refer to
a specific range of dates. A set of field level policies have also
been specified, which map customer’s preferences constraining
the accessibility of personal data in case the purchase is achieved
without a customer loyalty card. In this scenario, a security ad-
ministrator may be interested to check the effectiveness of the
specified policies and related access control options, by checking
the accessibility of orders data by third party analysts. Due to
he hierarchical structure of the considered documents, and the
eterogeneous document structures, this analysis is significantly
ore complex than the one related to the RDBMSs scenario
iscussed at the beginning of this section, which presented a
lat, tabular data organization. The access to any field of orders
ocuments is regulated by multiple policies specified at different
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granularity levels. For instance, the access to field phone in the
first document of Fig. 1 depends on the policies specified for:
(1) field phone, (ii) all fields preceding phone in the document
structure (i.e., cardHolder, and customerCard), the document d
where phone is enclosed, (iii) the document collection orders that
comprises d, and )iv) the whole database e-shop where orders is
included. Overall, the accessibility of any document field f can
nly be derived by composing, on the basis of the specified access
ontrol options, the policies specified for the elements preceding
in the hierarchical structure of the considered data resource.

Most of the previous research efforts dealing with the analy-
is of access control policies have been devoted to mechanisms
inalized at verifying correctness, detecting inconsistencies, re-
undancies, and reasoning on completeness of policy sets (see
ection 8 for more details). However, none of the existing ap-
roaches consider the effects of policy sets on data accessibility,
hich is the focus of current work, and none have been specifi-
ally designed to operate with NoSQL datastores. More precisely,
or accessibility of a data resource for which a set of policies
nd access control options have been specified, we mean the
ndication, at the finest granularity level possible, of the data
ortions whose access is granted/denied.
In this paper, we start filling this void with an approach which,

or schemaless datasets hosted by different NoSQL systems and
rotected by access control policies defined according to multiple
AC models and configuration options, allows assessing the im-
act of the considered policies on data accessibility. The proposed
pproach helps security administrators in configuring the set of
ccess control policies for a NoSQL datastore, since it allows them
o evaluate the effectiveness of access control policies before they
re deployed into a target NoSQL datastores. The approach can
ase the identification of a set of policies and access control op-
ions capable of granting an acceptable protection level for target
atasets, in scenarios that potentially involve numerous subjects.
or instance, security administrators may be interested to see
hich portions of a target dataset could be accessed by a new
ubject who joins their company/organization, if a specific set
f policies and access control options were specified. It is worth
oting that the great majority of NoSQL systems integrate quite
asic access control features. For instance, MongoDB natively
nforces RBAC at document collection level and only supports
ositive policies. Therefore, security administrators may decide
o adopt third-party access control frameworks to grant a finer
rained and customizable data protection. For example, Apache
anger4 allows the integration of advanced enforcement mech-
nisms in NoSQL databases of the Hadoop ecosystem, whereas
everal academic frameworks (e.g., see [7]) allow enforcing DAC
ccording to a variety of models at fine grained level in target
oSQL databases. The proposed approach allows assessing the
mpact of policies to be supported by the se frameworks, also sup-
orting, at the same time, those specified according to the native
ccess control models of multiple NoSQL systems. Accessibility
nalysis can even be achieved before enabling any data protection
echanism in a NoSQL database. The analysis allows assessing

he level of protection that would be granted by the adoption of
security framework characterized by: (i) a given access control
odel, (ii) a set of policies specified for such a model, and (iii)
onfiguration options for the considered policies.
The flexibility that is required to operate with multiple NoSQL

ystems, and the intrinsic complexity of schemaless data re-
ources, make the definition of this framework an ambitious
oal. We approach the problem by first introducing a unifying
ata model capable of representing data resources of multiple

4 https://ranger.apache.org/.
NoSQL data models, and supporting the specification of policies
according to the major DAC models. Along with the data and the
specified policies, the unifying model allows tracing structural
and security-related metadata characterizing a target resource,
which are then used for policy analysis purposes. The unifying
model is complemented with data-model agnostic services sup-
porting the mapping of a target data resource referring to a native
data model to a resource of the unifying model and back. This
representation is then used to assess the accessibility of the target
resource, by generating a view that shows its authorized and
unauthorized contents.

In order to maximize portability, the proposed approach has
been built on top of MapReduce [14]. Indeed, several NoSQL
systems provide native support for this computational paradigm
(e.g., MongoDB), and connectors exist which allow the execution
of MapReduce tasks within systems not having a native support
for it.

The approach is independent from a specific data model, thus,
it can be potentially used with NoSQL systems operating with the
document oriented, key–value, and wide column data models. It
can be also easily extended to more traditional DBMSs (e.g., re-
lational, object-oriented). Taking advantage of this flexibility, our
framework can also be profitably used in federated database sys-
tems that involve multiple heterogeneous NoSQL datastores. The
proposed unifying solution allows system administrators to eval-
uate data accessibility with policy sets that regulate the access to
any database of the federation.

The approach supports access control policies expressed with
all the major DAC models. However, in this paper, to simplify
the presentation, we consider policies referring to the ABAC
model [4]. Experimental evaluations of the analysis process ef-
ficiency performed on real datasets show good performance re-
sults.

To the best of our knowledge this is the first work aiming at
assessing the effect of access control policies on the protected
resources within NoSQL systems.

The remainder of the paper is organized as follows. Section 2
introduces background knowledge. Section 3 discusses require-
ments for the proposed framework. Section 4 introduces the
unifying data model, whereas Section 5 details our approach.
Section 6 presents the experiments. Finally, Section 9 concludes
the paper.

2. Background

2.1. MapReduce program synthesis

The algorithms at the basis of our approach are presented
using a notation for MapReduce tasks inspired by [15].

A MapReduce taskmr can be seen as a function which, starting
from a collection of elements of type T, by composition of parallel
operations, derives a collection of elements of type T’, where
’ models a key–value pair (k, v). Aligned with the notations
resented in [15], the operations of each MapReduce computa-
ion are parametrized as functions. Therefore, mr consists in the
arallel execution of multiple instances of a map function m and
f a reduce function r. A mapper forwards any element received
s input by mr to an instance of m, which once analyzed the
lement, emits a key–value pair (k, v). For each distinct key k
mitted by m instances, the emitted pairs that specify k as key
re forwarded to a reducer, which processes them by means of
he reduce by key function r. Function r is invoked specifying as
nput the key k, and the collection of value components of the
edirected pairs. r aggregates the collection of values received as
nput, returning a key–value pair (k, v). If a finalization function
has been specified for mr, f is invoked once r completes the

https://ranger.apache.org/
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execution. f receives as input the key–value pair generated by r,
and returns a pair possibly specifying a new value component.

mr is thus specified by means of the notation (map m)∗ ↦→

(reduce r ▷ finalize f )∗, where, ∗ denotes parallel executions of
the functions between the round brackets, ↦→ denotes the flow of
key–value pairs emitted during the mapping phase of mr, which
are provided as input to the reduce by key phase, whereas ▷ is
used to denote the execution of f once r execution is ended.

Functions m, r, and f may in turn rely on auxiliary functions
for their computation. The notation f1 ↱ f2 is used to denote the
invocation of a function f2 within the execution of a function
f1. For instance, (map m ↱ f1)∗ ↦→ (reduce r ↱ f2 ▷ finalize f )∗,
specifies that f1 is executed during the execution of m, whereas
f2 is executed during the execution of r. Finally, in case multiple
functions f1..fn are sequentially executed during the computation
of a function f0, the ordered sequence of executions is specified
by listing the considered functions between squared parenthesis.
For instance, (map m ↱ [f1, f2, f3])∗ ↦→ (reduce r ↱ f4)∗ denotes
the execution of f1, f2, and f3 during the execution of m, and the
execution of f4 during the execution of r.

2.2. Attribute based access control (ABAC)

We now focus on the core features of the ABAC model [4,5],
which, for its flexibility and growing diffusion (e.g., [8,9]), has
been chosen to illustrate the proposed approach.

ABAC policies are built on top of the concepts of subject, object,
and environment. A subject is a model of a user that sends access
requests, and is characterized by attributes specifying properties
of the modeled user, such as the covered roles. An object is a
model of a data resource which is protected by a policy. Objects
can model coarse-grained resources, such as databases, as well
as resources at finer granularity levels, like documents or related
fields. Objects are characterized by attributes, specifying proper-
ties of the modeled resources, for instance, metadata specifying
the sensitivity level of the resource content. Finally, an environ-
ment is a model of the context within which an access request
is issued, and it is composed of attributes modeling context
properties. For instance, an environment attribute can specify the
time at which an access request has been issued by a subject.

ABAC policies regulate the access to an object by a subject
within an environment on the basis of the satisfaction of con-
straints specified on object, subject, and environment attributes.
For instance, an ABAC policy specified for an object o may require
that at least one of the roles of the subject s who issues the
request to access o is authorized to access data with sensitivity
level greater than or equal to the one specified for o, and the MAC
address of the device which is used by s to request the access
belongs to a list of authorized devices.

3. Requirements

Let us now focus on the key requirements that we have
considered in defining an approach to evaluate the impact of
access control policies on data handled by NoSQL systems. These
requirements have been derived from the literature on access
control (e.g., [12,16]), existing enforcement monitors (e.g., Apache
Ranger5), and features of NoSQL datastores.

Flexibility is a key goal, as NoSQL systems operate with dif-
ferent data and AC models, handling schemaless data with het-
erogeneous structures. Resources can be protected by multiple
policies, thus proper policy combination strategies are required.
The approach should support both the minimum and maximum
privilege strategies. As such, the combining options (co) all and any

5 https://ranger.apache.org.
Table 1
Access control options.
Access control option Supported criteria

co Combining options {any, all}

crs Conflict resolution strategies {denials take precedence,
permissions take precedence}

ppc Policy propagation criteria {no propagation, no overriding,
most specific overrides}

st System type {open, closed}

need to be supported (e.g., see Oracle Vault6). According to the
option all, an access request ar targeting a resource rs, for which
a set Ps of policies has been specified, is authorized if all policies
in Ps are satisfied. In contrast, the option any requires that at least
one policy in Ps is satisfied.

Although DAC models of the majority of DBMSs support posi-
tive policies, some proposals also enforce negative policies, which
express explicit denials [1]. For instance, Apache Ranger allows
enforcing positive and negative policies within HBase (https://
hbase.apache.org) platforms. As such, the approach has to sup-
port conflict resolution strategies (crs) to handle possible conflicts
among positive and negative policies protecting the same re-
source, such as the strategies permissions take precedence and
denials take precedence, which respectively prioritize positive and
negative policies (e.g., see [12,17]).7

Some data resources may not be covered by any policy. A
system is denoted as open/closed, if it authorizes/prohibits the
access to resources for which no access control policy has been
specified. The proposed approach has therefore to operate in both
open and closed systems.

Policy propagation is another feature affecting the impact of
policies on data accessibility. For instance, in a document store,
a policy specified for a document d can affect the decision to
access a field of d. The approach has to support state of the art
policy propagation criteria (ppc), like no propagation, no overriding,
and most specific overrides (e.g., see [12]). When the option no
propagation is used, the access decision related to a resource dr is
not propagated to any included resources. The optionmost specific
overrides propagates the access decisions from dr to any included
resource dr’ unless at least one policy has been specified for dr’.
In this case, the decision derived from the local policies prevails.
Finally, the option no overriding propagates the access decisions
derived for dr to any finer grained resource included in dr, where
t is combined with the local policies.

A summary of the required features is presented in Table 1.

. Unifying data model

The proposed approach has been designed for NoSQL datas-
ores operating with the key–value, wide column, and document-
riented models [18]. Since the considered data models refer to
ata resources using heterogeneous terms, hereafter we intro-
uce a data model independent unifying terminology.
The term data unit denotes a data resource at the finest gran-

larity level at which data insertion can be executed in a NoSQL
ystem. Within key–value stores, data units map ⟨key, value ⟩

airs, within wide column stores they map table rows, whereas
ithin document stores, data units map documents. Data units
an either represent data of simple type (e.g., numeric), de-
oted as basic resources, or data of complex type (e.g., an object),

6 https://docs.oracle.com/cd/B28359_01/server.111/b31222/toc.htm.
7 These strategies map the XACML policy combining algorithms permit

override and deny override, respectively.

https://ranger.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://docs.oracle.com/cd/B28359_01/server.111/b31222/toc.htm
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Table 2
Reference notation summary.
Notation Meaning

emit(k,v) Denotes the emission of a key–value pair ⟨k,v⟩

πf (o) Denotes the value of field f of object o

Γ (o) Denotes the set of all fields composing the first
layer of the hierarchical structure of object o

setField(o,f,v) Denotes the initialization of field f of object o to
the value v, where f is a field at the first layer of
o structure. In case field f does not exist within o,
f is added to o structure, and then initialized to v

delField(o,f) Denotes the removing of field f from object o,
where f is a field at the first layer of o structure

push(S,e) Denotes the inclusion of element e within the set S

denoted as composite resources. Data units mapping composite
esources are composed of more elementary entities, referred to
s data unit components, each of which in turn maps a basic or
composite resource. Data unit components refer to the finest
ranularity level at which read and update operations can be exe-
uted. For instance, in wide column stores, a data unit component
an either map a row cell, or groups of cells belonging to the same
olumn family. Finally, in document stores, components of a data
nit du representing a document dc map the fields of dc, which
an either be basic, or composite resources.
Different criteria are used to represent coarse grained re-

ources in different NoSQL data models. Key–value pairs are
tored within databases denoted as key-spaces. Document and
ide column stores introduce a resource hierarchy. Indeed, col-

ections and tables group documents and table rows, and are
ncluded in databases. Data resources are seen as entities collect-
ng either fine grained or coarse grained resources. Containment
elations are exclusive in all data models, thus data resources can
e represented as trees. More precisely, let dr be a data resource
nd let Tdr be the tree representing the structure of dr. Each tree
ode v of Tdr refers to finer grained data included in dr. Let us
enote with unifying resource property (urp) a node of a resource
ree. A data resource dr can thus be modeled as a set of urps
related among them to form a tree. Any urp contributing to the
definition of dr specifies the inclusion within any urp that maps
a (sub)resource of dr.

Definition 1 (Unifying Resource Property). Let dr be a data re-
source which refers to a data model dm, and let sdr be a resource
included in dr. The unifying resource property urp modeling sdr
is a tuple ⟨id, path, k, v⟩, where id is the identifier of urp, path
specifies a list of identifiers referring to the unifying resource
properties that precede sdr within dr ’s structure, while k and v
specify the identifier of sdr within dm, and its optional value,
respectively.

Component path of urp specifies a relative path which allows
positioning sdr in dr, whereas component v may be left unspeci-
fied. The value is specified only when unifying resource properties
are used to represent data resources at the finest granularity level.

Example 3. Suppose dr is a document oriented database of
emails. dr ’s emails are documents, whereas email properties, such
as body and subject, are document fields. dr can be modeled as a
set of urps. Any urp modeling an email field f refers to the urp
representing the email document that includes f. The approach
is recursive, thus, any urp that maps an email e refers to the
urp that models the document collection where e is included.
Finally, the urps of these collections refer to a urp that maps

the whole database dr. Let us now consider the definition of a
unifying resource property u, which maps an email document e
of a document collection c included in dr. Let us suppose that
the urps referring to c and dr specify uc and udr as identifiers,
respectively. Let us also assume that uid is a unique identifier
within the namespace of urps specified for dr. u is thus specified
as ⟨uid, [udr , uc ], eid, ⊥⟩, where uid is the identifier of u, [udr , uc ]
specifies the urps preceding u within the tree structure of dr, eid
is the identifier of e, and ⊥ indicates that no value is explicitly
specified within u as e is a composite resource. The content of
u is modeled by urps which map data resources included in e
(e.g., body and to).

The urps specified for dr and its internal resources form the
unifying resource model of dr, namely the representation of dr
within the unifying data model.

Definition 2 (Unifying Resource Model). Let dr be a data resource
of a data model dm. The unifying resource model of dr, denoted
as dr∗, is the set of all urps which map the resources included
in dr. More precisely, dr∗ =

⋃
v∈VTdr

urvdr
, where VTdr denotes the

et of nodes in the tree representation of dr and urvdr
denotes the

nifying resource property modeling the resource included in dr
hose tree structure specifies v as root.

The proposed model is general enough to represent resources
f different data models at any granularity level. For instance,
onsidering the document oriented data model, dr can represent
a database, a collection, a document, or a field.

5. The approach

Our aim is to define a general approach to evaluate the im-
pact of a policy set on the accessibility of schemaless resources
handled by NoSQL datastores operating with different data and
DAC models. The generality is attained by leveraging the uni-
fying data model (see Section 4), and by building the approach
on top of MapReduce [14], which is extensively supported by
NoSQL systems. The approach relies on bidirectional mappings
between data resources referring to a native NoSQL data model
and resources in the unifying model.

We define a process articulated into 3 phases, presented in
Fig. 2. Starting from: (1) a target data resource rs of a native data
model, (2) a set of access control policies Ps, and (3) of access
control options ao (cfr. Table 1), the process derives a view rs’ of
rs showing the effects of policy enforcement. Phase 1 focuses on
the derivation of rs∗, the unifying resource model of rs. A map-
reduce job, denoted unifier, identifies rs components, and derives
a urp for each component (cfr. Section 5.1). Phase 2 focuses on
the specification of security metadata and access control policies
regulating the access to rs (see Section 5.2). Policies and metadata
are bound to the data by labeling the urps derived in phase 1.
Finally, phase 3 handles the evaluation of policy impact on data
accessibility. A map-reduce job, denoted projector, analyzes the
considered policies and access control options, and derives a view
rs’ of rs that shows the accessibility of rs components, pointing
out those authorized and unauthorized (see Section 5.3).

In the remainder of this section, we present in more detail
each of the above mentioned phases.

5.1. Phase I: Derivation of a unifying resource model

Let us now consider how a data resource dr represented in
its native data model can be mapped to the unifying data model.
dr can represent data resources of any type, referring to any of
the supported data models, and the mapping can be configured
to operate at any granularity level. Hereafter, the approach is
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llustrated for coarse-grained composite resources which map
ets of data units, such as key-spaces, collections of documents,
r tables. Resources at coarser grained level (e.g., databases) can
e handled by applying the approach to all sets of data units
omposing the resource. The mapping is achieved by a MapRe-
uce task unifier (see Algorithm 1), which receives as input dr,
isits its tree structure, (2) derives a urp for each node of the
ree, and, by composition of these elements, (3) derives dr∗, the
nifying resource model of dr. The approach relies on a few basic
unctions, summarized in Table 2.

Algorithm 1: The MapReduce task unifier
MapReduce task unifier is

input : a data resource dr that refers to a data model
dm, composed of data units du

output: dr∗

(map m ↱ duMapper)∗ ↦→ (reduce r)∗
end

The mapping function m of unifier (see Algorithm 2) is exe-
uted for any data unit du of dr. For any component of du, m emits
a key–value pair that models a urp (see Definition 1). The key of
the emitted pair is the identifier of the urp, whereas the value is
a record structured according to the tuple in Definition 1.

Algorithm 2: The mapping function m of unifier
function m is

input : du
output: ⟨k, v⟩, where v models a unifying resource

property urp, and k refers the value of field id
of urp

1) var urpS:=duMapper (∅, du);
2) for urp ∈ urpS do
3) emit (πid(urp),urp);

end
end

The analysis of data units and related components is handled
y function duMapper (see Algorithm 3), which is executed on
equest of m for a data unit du. duMapper performs the recursive
nalysis of du components, deriving a set urpS of objects modeling
rps, which, once returned to m, are emitted as key–value pairs.
he analysis performed by duMapper starts by considering the
ata resource obj.
duMapper visits the tree structure of obj, and, for each field f

of obj, generates an object urp that includes the fields path and
K, which specify the position and identifier of f, and an optional
field V, which keeps track of the value of f. If f maps a simple field
of du, field V is initialized to the value of f. In contrast, if f maps
a complex property (i.e., if field f of obj is an object), V is not set,
and duMapper is recursively invoked on the object representing
the value of f within obj. The recursive execution of duMapper
results into a set of objects sUrpS which is merged with urpS.
 t
Fig. 3. An example of data unit representing an email document.

Algorithm 3: The auxiliary function duMapper of unifier
function duMapper is

input : cPath, obj
output: a set urpS of objects modeling unifying

resource properties
(1) var urpS:=[];
(2) for f ∈ Γ (obj) do
(3) var urp:=⊥;
(4) setField (urp, "path", cPath);
(5) setField (urp, "id", generateId ());
(6) setField (urp, "K", f);
(7) if |Γ (πf (obj))|> 0) then
(8) var sPath:=valueOf (cPath);
(9) push (sPath,πid(urp));
10) var sUrpS:=duMapper (sPath,πf (obj));
11) urpS:=urpS ∪ sUrpS;

else
12) setField (urp,‘‘V’’,πf (obj));

end
13) push (urpS,urp);

end
14) return urpS;

end

The reduce function r keeps unvaried the pairs emitted by m.
hus, the urps resulting from the mapping compose dr∗.

xample 4. Let du be an email of dr (see Example 3), serialized in
SON format in Fig. 3. Let us now consider the execution of unifier
pecifying dr as input data resource. Function m is executed for
ny data unit included in dr. In particular, during the execution
f m targeting du, duMapper is invoked by m to analyze du, and
erives a urp for any field f of du. The set urpS of all generated
rps is then returned to m, which emits one key–value pair for
ach included element. A sample of 3 emitted key–value pairs is
hown in Fig. 4.
Field path of any generated urp specifies the position of the

odeled data within the data resource. The first, second and
hird elements of path in Fig. 4 refer the database, collection and
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Fig. 4. A sample of the unifying resource properties generated by unifier .

document that include the modeled fields. The urps that model a
field f at level 2 of du structure also keep track of the field that
includes f. Thus, for field From, the last element of path refers to
the identifier of the urp modeling field headers.

5.2. Phase II : Policy specification and binding

The proposed framework supports the analysis of access con-
trol policies specified according to different DAC models, protect-
ing up to single data unit components. It supports the analysis
of both negative and positive policies, possibly specified on top
of security metadata, as several access control models use them
(e.g., [3] and [19]).

The binding of policies and security metadata to the protected
resources is achieved by integrating these data in urps. Two fields
are added to the tuple specifying a urp: (1) meta, which keeps
track of the security metadata; and (2) pol, which models the
policies specified for the mapped resource.

An access control policy acp specified for a unifying resource
property urp, is a pair ⟨exp, tp⟩, where exp specifies a boolean
expression constraining the access to urp,8 whereas tp specifies
if acp is positive or negative. In contrast, security metadata are
specified as sub-fields of component meta of urp.

In this paper, policy specification and binding is exemplified
with ABAC policies. A policy p protecting data modeled by a
unifying resource property urp is specified within component
pol of urp, in such a way that field exp of p specifies a boolean
expression defined by composition of the variables s, o, and e,
which model subject, object, and environment attributes.

Example 5. Let us consider the specification of security metadata
related to a data unit component duc that models field body of
the email in Example 4. Let us suppose that security metadata
are used to specify the purposes for which duc can and cannot be
accessed. Let urp be the unifying resource property modeling duc.
Field meta of urp is defined in such a way to include the fields aip
and pip, which specify the purposes for which the message can/
cannot be accessed.

The ABAC policies p1 and p2 regulate the access to body on the
basis of purpose compliance [2]. p1 is a positive policy specifying
the predicate ‘‘s.ap∈meta.aip’’, whereas p2 is a negative policy

8 Exp is defined by composition of variables referring to conceptual elements
of the considered access control model (e.g., subject, object), mathematical
operators (>, <, =, +, −, ∗, /), logical operators (∧, ∨, ¬), set operators
∈, ⊂, ⊆, ∩, ∪, \), and logical quantifiers (∀, ∃).
Fig. 5. Unifying resource properties integrating policies and security metadata.

pecifying the predicate ‘‘s.ap∈meta.pip’’. Both predicates refer:
1) the subject attribute ap, specifying the access purpose of the
ubject s, and (2) the properties aip/pip of the security metadata
pecified for duc within urp, which specify the purposes for which
uc can/cannot be accessed. The binding of these policies is
chieved as shown in Fig. 5.

.3. Phase III: View generation

Phase III is the core task of the whole approach, which maps
esources of the unifying model back to the original data model,
eriving a view of the original resource, which on the basis of
he specified policies and access control options, points out au-
horized and unauthorized contents. To ease the comprehension
f this complex task, in Section 5.3.1, we introduce the rationale
f the mapping task, which is instrumental to the definition of
he view generation approach, later presented in Section 5.3.2.
he mapping is instrumental to assess the effects of policies and
elated options on the accessibility of the protected resources. We
elieve that security administrators could better perceive these
ffects with a view derived for the original data model, rather
han by means of an abstract representation based on the unified
odel.

.3.1. Resource mapping from unifying to native data model
In this section we discuss the reverse mapping of a resource dr∗

f the unifying data model, to the original resource dr from which
r∗ has been derived, without considering the access control
olicies possibly specified for dr within dr∗.
The reverse mapping is achieved by the MapReduce task re-

odeler (see Algorithm 4), which receives as input a resource dr∗
f the unifying data model, and derives the data resource dr from
hich dr∗ has been generated. remodeler operates recomposing
he data units of dr, by aggregation of the unifying resource
roperties in urpS, where urpS is the set of unifying resource
roperties characterizing dr∗.

Algorithm 4: The MapReduce task remodeler
MapReduce task remodeler is

input : A unifying resource model dr∗ consisting of a
set urpS of unifying resource properties derived
from dr

output: a collection of data units characterizing dr
(map m)∗ ↦→ (reduce r ▷ finalize f ↱ updateDu)∗

end

Let urp be the unifying resource property analyzed by a single
execution of m (i.e., urp ∈ urpS), the key of the emitted key–value
pair is the identifier of the data unit referred to by urp, and the
value is an object structured according to Definition 1.
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On the basis of the specified keys, the emitted pairs are for-
warded to distinct execution tracks of the reduce function r, in
such a way that each execution handles the aggregation of urps
contributing to the definition of the same data unit. Therefore, r
s defined in such a way to receive as input a set of urps that
ap components of the same data unit, and thus specify the
ame key (see Algorithm 5 that shows the pseudocode of r). The
ncremental building of the data unit is achieved by defining an
nitially empty object du, and then adding a new field to du, for
ach urp received as input by r.
Due to the possible hierarchical structure of data units, and to

he unpredictable order with which the urps received as input by
are analyzed, r may not be able to complete the derivation of the
ata units. For instance, at a given point of the execution, r could
nalyze a urp that maps a data unit component duc specifying
s parent component duc’, a data unit component of du that has
ot been yet added to du structure. Therefore, r may not be
ble to properly position duc within du. This issue is handled
y keeping track of all dangling components in temporary fields
f the derived data units, postponing the restructuring of these
esources during the finalization phase of the remodeler task. The
etails of this mechanism will be provided later in this section.

Algorithm 5: The reduce by key function r of remodeler
function r is

input : a set urpS of urps modeling components of
the same data unit, the identifier key of the
referred data unit

output: a data unit du
(1) var du:=⊥; tbs:=[]; tbp:=[];
(2) for urp ∈ urpS do
(3) if last (πpath(urp)) = key then
(4) if V ∈ Γ (urp) then
(5) setField (du, πK(urp), πV(urp));

else
(6) setField (du, πK(urp), πid(urp));
(7) push (tbs, πid(urp));

end
else

(8) if last (πpath(urp)) ̸∈ Γ (urp) then
(9) setField (du, last (πpath(urp)), ⊥);
10) push (tbp, last (πpath(urp)));

end
11) if V ∈ Γ (urp) then
12) setField

(πlast(πpath(urp))(du),πK(urp),πV(urp));
else

13) setField
(πlast(πpath(urp))(du),πK(urp),πid(urp));

14) push (tbs, πid(urp));
end

end
end

15) setField (du,‘‘tbs’’, tbs);
16) setField (du,‘‘tbp’’, tbp);
17) return du

end

The input parameter key of r refers the identifier of the target
ata unit du to be derived, whereas urpS denotes the set of urps
hat map the components to be included into du. The derivation
of du considers a single unifying resource property urp at a time,
from those included in urpS (see line 2 of Algorithm 5).
 s
If the last element included in field path of urp refers to the
value of key, urp models a field at level one of du structure.9 If
urp includes a field V of simple type, a new field is added to du,
which has the value of K as identifier and the value of V as value
(i.e., πV (urp) - cfr Table 2, see line 5 of Algorithm 5). In contrast, if
urp does not include a field V, as it models a field of complex type,
the field added to du structure specifies the value of K as field
name, and the value of id as field value (see line 6 of Algorithm 5).
Due to the unpredictable processing order of urps operated by r,
the corresponding component could have been already included
in du or it could be added in a subsequent stage. The value of
field id (i.e., πid(urp)) is thus a placeholder which, during the
finalization phase of remodeler, will be replaced with the value
of a field of du having πid(urp) as identifier. r adds πid(urp) to tbs,
a list of placeholders to be replaced with components at layer one
of du structure.

In contrast, if path does not refer to du’s identifier, urp does
not correspond to a component at the first level of du structure,
but to one at a deeper level. In this case, the identifier referred
to by path is related to the object which should include the
component modeled by urp as field. If no component exists within
du whose identifier corresponds to the one referred to by path,
a field with such an identifier is added to du structure and it is
initialized to an empty object (see lines 8–9 of Algorithm 5). This
object is populated on the basis of the information extracted from
the other urps analyzed by r. In this case, path does not refer
to a component that will be included at level one of the data
unit, but to one which needs to be moved to a deeper level of
du structure, substituting the respective placeholder specified as
value of another du field. Thus, r keeps track of such an identifier
within tbp, a variable collecting fields which need to be pruned
out from du during the finalization phase, once the required
substitutions have been performed (see line 10 of Algorithm 5).
The component modeled by urp is thus added as sub-field of the
one referred to by path, following the same criteria that have been
considered for fields at the first level of du structure. Therefore,
similar to the previous scenario, urp can specify a field V, meaning
that urp models a field with a value of simple type. In this case,
a field with identifier K and value V is added to the structure of
the component referred to by path (see lines 11–12 of Algorithm
5). In contrast, if urp does not specify any field V, urp models a
subfield of du characterized by a complex type, and, therefore,
a field with identifier K is added to the structure of the object
referred to by path, and initialized to the identifier of urp. Like
previous case, this value acts as a placeholder to be substituted
with an object represented as direct field of du (see lines 13–16
of Algorithm 5).

Example 6. Let urpS be a set of urps derived from dr, the
database of emails introduced in Example 4, and let sUrpS be
a subset of urpS composed of urps mapping fields of the email
message shown in Fig. 4. All fields, except headers, have values of
simple types. Let us now suppose that field path of the urps mod-
eling Date, From, To, and Subject refers to the urp that maps field
headers. Let us also suppose that field path of the urps modeling
body, mailbox, and headers refers the identifier of the email. Let us
now consider the execution of remodeler on urpS, focusing on the
pairs emitted by m for the urps in sUrpS. Function r incrementally
builds an object du, representing the considered email. r initially
defines du as an empty object, and then incrementally adds fields
representing the above considered components. The analysis of
urps whose field path refers to d causes the inclusion of the
corresponding components at level one of du structure. The fields

9 path models the list of urps mapping components which, within the tree
tructure of dr, precede the component mapped by urp.
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body and mailbox are initialized with the value of component V
of the related urps. In contrast, the urp mapping headers does not
xplicitly specify a value. Thus, field headers is added to du and it

is temporarily initialized to 53da, the identifier of the correspond-
ing urp (see Fig. 4). The string 53da is then appended to field tbs of
du, which keeps track of the list of placeholders to be substituted.
Since field path of the urps modeling Date, From, To, and Subject
refers to 53da, as soon as r analyzes the first of these elements,
field 53da is added to du structure. This field is initialized to an
object which is then populated with information extracted from
the other urps referring 53da as parent component. Thus, 53da is
incrementally defined as characterized by the fields Date, From,
To, and Subject, which are set to the simple values extracted from
the corresponding urps.

Finally, the finalization function f of remodeler derives the data
units modifying the objects returned by r. Algorithm 6 shows its
pseudocode.

Algorithm 6: The finalize function f of remodeler
function f is

input : the data unit du derived by the execution
trace of r preceding f execution

output: a modified version of the data unit du
received as input

1) for oid ∈ πtbs(du) do
2) updateDu (du, oid, πoid(du));
3) delField (du, oid);

end
4) for oid ∈ πtbp(du) do
5) delField (du, oid);

end
6) delField (du, ‘‘tbs’’);
7) delField (du, ‘‘tbp’’);
8) return du;

end

f operates on a single object du at a time, executing the
substitutions specified within field tbs. For each placeholder oid
of tbs, πoid(du) refers the replacement value, namely the value of
the field of du specifying as identifier the value of oid (see line 2
of Algorithm 6). The substitution is handled by function updateDu,
which traverses du structure looking for a field whose value
matches the value of oid. Once such a field is found, updateDu
reinitializes the field to the value referred to by πoid(du). Finally,
finalize prunes out from du the field with identifier oid, and once
all substitutions have been executed, it deletes tbs and tbp (see
lines 6–7 of Algorithm 6).

Example 7. Let us consider again Example 6, now focusing
on the activities performed by the finalization function f on the
object du returned by r. By definition of r (see Algorithm 5), field
tbs of du collects all the placeholders for which a substitution is
required. In the considered scenario, tbs only includes the string
53da, which represents the identifier of a field of du specifying as
value an object characterized by the fields Date, From, Cc, To, and
Subject. Function updateDu visits du structure looking for a field
which specifies 53da as value, and, consequently, identifies the
field headers of du. As a consequence, updateDu substitutes the
placeholder 53da of headers with the value of field 53da. Finally,
finalize removes from du the fields 53da, tbs, and tbp and returns
du.

5.3.2. The view generation approach
Let dr∗ be a unifying resource model derived from a data re-
source dr, which embeds a set of access control policies specified
for dr. We now discuss the MapReduce task projector, which,
starting from dr∗, a combining option co, a conflict resolution
strategy crs, a policy propagation criterion ppc, a system type st
(cfr. Table 1), and a set arc of parameters specifying an access
request context,10 derives a view of dr that points out autho-
rized and unauthorized contents. projector, introduced in Algo-
rithm 7, is defined by extension of remodeler (see Section 5.3.1),
integrating analysis mechanisms into the reverse mapping.

Algorithm 7: The MapReduce task projector
MapReduce task projector is

input : (1) A unifying resource model dr∗ representing
a data resource dr, which embeds security
metadata and policies, (2) a combining option
co, (3) a conflict resolution strategy crs, (4) a
policy propagation criterion ppc, (5) the
considered system type st, and (6) a set arc of
parameters specifying the access request
context

output: a view of dr that shows authorized and
unauthorized data

(map m ↱ [ evaluate, combinePs, conflictRes] )∗ ↦→

(reduce r ▷ finalize f ↱ [updateDu, evaluate, combinePs,
conflictRes, propagateDCG ↱ handleSP, propagateFCG ↱
handleSP])∗

end

In explaining the approach, we rely on functions that al-
low evaluating policy predicates, handling policy composition
and conflict resolution, implementing the options presented in
Section 3. Function evaluate checks the satisfaction of a policy
predicate pp of a policy p wrt an access request context arc.
Function combinePs combines a set Ps of positive/ negative poli-
cies specified for a resource obj, on the basis of the combining
option co (see Table 1), and derives a decision by conjunction/
disjunction of policy predicates satisfaction. Function conflictRes
addresses possible conflicts among positive and negative policies
protecting a resource obj, on the basis of a conflict resolution
strategy crs (see Table 1).

Let us start to consider at which point of the reverse mapping
the specified policies can be analyzed. Policies specified for urps
that map fine grained resources can only be analyzed at the end of
the finalization phase, once the resources referred by the policies
have been completely recomposed. Indeed, policies specified for
a data unit du may refer to du components, which are correctly
positioned within du only once the job is completed. As such,
projector extends remodeler in such a way that any derived data
unit du keeps track of the policies specified for du and its data
unit components.

On the basis of these considerations, let us now focus on
the extensions, introduced in projector, to the map and reduce
functions m and r of remodeler (see Section 5.3.1).

Function m has been enhanced to evaluate policies specified
for coarse grained resources. Let urp be a unifying resource prop-
erty analyzed by m. If urp represents a coarse grained resource,
m analyzes the policies specified for urp, otherwise m emits the
pair representing urp. Policy enforcement is handled by functions
evaluate, combinePs and conflictRes which combine the policies
specified for urp and address possible conflicts on the basis of
the specified criteria. Depending on the data model, one or two
layers of coarse grained resources may be used by a data manage-
ment system. For instance, MongoDB adopts a document oriented

10 The parameters refer concepts of the considered access control model
(i.e., for ABAC the subject s and environment e characterizing an access request).
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Fig. 6. Portion of data unit derived from reduce of projector .

model with 2 layers of coarse grained resources (i.e., database and
collection), whereas Redis uses a key–value model with a single
layer (i.e., the key-space). m keeps track of the derived decisions
within global variables, in such a way that the decisions can
be accessed during policy propagation. More precisely, variables
dcgl1 and dcgl2 are used to keep track of decisions related to
coarse grained resources at level 1 and 2, respectively, referred
to by two additional global variables, denoted cgl1 and cgl2.

The reduce by key function r has been extended in such a
way to derive a data unit du, which, embeds the policies and
security metadata that have been specified for the urps received
as input. Policy and metadata referring to du and du components
are specified within the fields pol andmeta, which are added to du
structure. The policies in pol are objects composed of the fields id,
path, psa, and psp, where id identifies the protected object, path
denotes the position of the protected object, whereas psa and psp
refer the predicates of the positive and negative policies specified
for id. Similarly, security metadata are defined by means of the
fields id, path, and psSet, where psSet specifies security properties,
whereas, id and path refer the resource to which the properties in
psSet are bound. pol and meta are derived from the corresponding
fields of the urps received as input by reduce.

Example 8. Let us consider again the scenario in Example 6.
Fig. 6 shows a partial view of the data unit with identifier 3e29,
resulting from the execution of r of projector. The temporary
structure of the data unit shown here still has to be modified
during the finalization phase.

Most of the extensions that have been introduced in projector
are related to the finalization function f, which differs from the
analogous function of remodeler for policy analysis tasks executed
once the restructuring phase of the data unit du operated by f
is complete. Three tasks are sequentially executed: (1) the policy
composition task, which handles the composition of all access
control policies specified for du and any component duc included
in du, and derives a temporary access decision for any protected
resource; (2) the policy propagation task, which handles the prop-
agation of access decisions within du structure, and derives a
definitive decision for any resource within du hierarchy; and
finally, (3) the view generation task, which generates a view of du
marking any unauthorized component on the basis of the derived
decisions. Let us now consider in more details each of these tasks.

5.3.2.1. Policy composition. Let us denote with du the data unit
generated by an execution trace of r, which is provided as input
to f. For any element p within component pol of du, f derives the
protection object obj of p wrt which p must be evaluated. obj is
derived copying the resource referred to by field path of p and
then integrating possible security metadata.

Example 9. Let us focus on the policies specified for the data
unit du considered in Example 8 and for the related components.
In particular, let us consider the policy p specified for field body.
he protection object obj derived by f maps the object which
ncludes body as field, namely the whole content of field value
f the key–value pair in Fig. 6. Since an element referring the
ame path as p is included in field meta of du, the properties aip
nd pip, respectively initialized to [research, administration] and

[marketing] are added to obj.

The composition is handled by function combinePs and con-
flictRes (see the initial part of Section 5.3.2), which are invoked
specifying the protected object obj, the set of positive and nega-
tive policies included in the fields psa and psp of p, the combining
options co, and conflict resolution strategy crs that have been
specified for projector. The execution results in an authorization,
a prohibition, or, if no positive and no negative policy has been
specified within p, in an undefined decision. The derived decision
is temporary as it does not consider the policies defined for the
coarser grained resources that include obj. The final decisions will
be derived in the latter phase of the analysis, on the basis of
the selected propagation strategies. f keeps track of the derived
temporary decisions within the fields authS, prohS, and undefS,
which are added to du structure. Such collector fields are used
to keep track of the path of the resources whose access, on the
basis of the analyzed policies, has been authorized, prohibited or
it has not been regulated by any decision. The composition phase
terminates once all policies in pol have been checked.

Example 10. Let us consider again the scenario in Example 9,
and let us suppose that: (i) any and denials take precedence have
been specified as policy combining option and conflict resolution
strategy, respectively, and (ii) the access request context arc of
projector refers to a subject attribute ap specifying the access pur-
pose marketing authorized for subject s. The fields psa and psp of
p include a single policy, thus, combinePs verifies the satisfaction
of the corresponding predicates, returning a prohibition for both
the policies. No conflict occurs and the access to field body is
prohibited by the applicable policies. As such body is added to
prohS.

5.3.2.2. Policy propagation. This task handles the propagation of
access decisions through the internal structure of du. Temporary
decisions are reconsidered on the basis of resource hierarchy and
the specified propagation criteria. Three criteria are supported:
most specific overrides, no overriding, and no propagation (see
Section 3). Let r1 and r2 be data resources such that r1 includes
r2, let fdr1 be the access decision derived for r1, and let tdr2
e the temporary decision derived for r2. Function handleSP (see
lgorithm 8) derives the final access decision fdr2 for r2 from tdr2
nd fdr1, on the basis of the policy propagation criteria ppc, the
onflict resolution strategy crs, and the system type st.
Let us start to focus on the criterion most specific overrides,

hich propagates the decision of r1 to r2 if no decision has been
aken yet for r2 (see Section 3). First, the temporary decision tdr2
pecified for r2 is checked. If tdr2 specifies an authorization or a
rohibition, the final access decision fdr2 is set to tdr2. Otherwise,
f tdr2 is undefined, fdr2 inherits the decision fdr1 specified for r1.

According to criterion no overriding, if a decision has already
een taken for r2, the final decisions of r2 is derived by com-
ining the decisions of r1 and r2, otherwise the access to r2 is
egulated on the basis of r1 decision (see Section 3). Therefore,
f no temporary decision has been taken for r2, the criterion no
verriding is handled likemost specific overrides. In contrast, if tdr2
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Algorithm 8: Function handleSP of projector
function handleSP is

input : fdr1, tdr2, ppc, crs, st
output: an access decision

(1) var fdr2:=⊥;
(2) switch ppc do
(3) case most-specific-overrides
(4) if tdr2=⊥ then return fdr1;
(5) else return tdr2;

end
(6) case case no-overriding
(7) if tdr2=⊥ then return fdr1;
(8) else

switch crs do
(9) case denials-take-precedence return

fdr1∧tdr2;
10) case permissions-take-precedence

return fdr1∨tdr2;
endsw

end
11) case no-propagation
12) if tdr2!=⊥ then return tdr2;
13) else

switch st do
14) case open return permit;
15) case closed return deny;

endsw
end

endsw
16) return fdr2

end

specifies a prohibition or an authorization, the final decision for r2
s derived from the combination of tdr2 with fdr1, on the basis of
he conflict resolution strategy denials take precedence/permissions
ake precedence, specified by crs. Finally, the criterion no propa-
gation represents the most straightforward case, as it does not
require to propagate and combine decisions. In this case fdr2
only depends on the temporary decision tdr2 which has been
possibly taken for r2. If the temporary decision tdr2 specifies an
authorization or a prohibition, fdr2 is set to tdr2. Otherwise, if
no temporary decision has been taken for r2, the final decision
fdr2 is derived on the basis of the open/close option specified
by st.

Example 11. Let us suppose that the final access decision fdr1
related to the data unit du in Example 10 is to grant access,
whereas the temporary decision tdr2 for field body specifies a
prohibition. Let us suppose that most specific override has been
specified as propagation criterion, whereas denials take prece-
dence as conflict resolution strategy. The final decision derived for
body corresponds to the previously derived temporary decision,
and thus to a prohibition.

The proposed propagation approach, which targets a pair of
resources, is applied to the resource hierarchy of a data unit
du. The analysis starts considering the decisions related to the
coarse grained resources that include du, which have been de-
rived during the mapping phase (see the initial part of this sec-
tion). Function propagateDCG (see Algorithm 9) derives the de-
cision to be propagated to du from the access decisions taken
uring the mapping phase, for the coarse grained resources that
nclude du.
Algorithm 9: Function propagateDCG of projector
function propagateDCG is

input : (1) the identifier of the course grained
resources referred to by cgl1 and cgl2, (2) the
final access decisions dcgl1 and dcgl2 related to
cgl1 and cgl2 respectively, (3) a conflict
resolution strategy crs, (4) a policy propagation
criterion ppc, and (5) the considered system
type st

output: an access decision dec
1) var dec:=⊥;
2) if dcgl1=permit ∨ dcgl1=deny then dec =dcgl1;
3) else
4) if st=open then dec =permit;

else dec =deny;
end

5) if dec =deny then push (unauthCGR, cgl1);
6) if cgl2̸=⊥ then
7) dec =handleSP (dec, dcgl2, ppc, crs, st);
8) if dec =deny then push (unauthCGR, cgl2);

end
9) return dec

end

Depending on the data model, one or two layers of coarse
grained resources may be used. If only one layer is used (i.e., if
cgl2 is null), and cgl1 refers to an authorization or a prohibition,
this becomes the final decision. Otherwise, if the decision is
undefined, the final decision is derived from the system type
(i.e., open/closed) specified by st. If the resulting decision is a
prohibition, the resource referred to by cgl1 is added to the set
unauthCGR, a global variable which keeps track of unauthorized
coarse grained components of the target resource. In contrast, if
two layers of coarse grained resources are used (i.e., if cgl2 is not
null), the decision dec for the resource at layer one, is provided
as input to handleSP, which propagates dec to the coarse grained
resource at layer 2, and returns the combined decision for the
resource referred to by cgl2, which includes du. If the decision is
a prohibition, the resource referred by cgl2 is added to unauthCGR.

Example 12. Let us suppose that: (1) the email considered in Ex-
ample 4 is a document of the collection messages, included in the
database emailDB, (2) no policy has been specified for messages,
and (3) the policies specified for emailDB, evaluated during the
mapping phase of projector grant the access. Let us suppose that
the system is closed, and the analysis is performed considering
denials take precedence as conflict resolution strategy, and most
pecific overrides as propagation criterion. Function f handles the
propagation invoking function propagateDCG. cgl1 and cgl2 refer
emailDB and messages, respectively, and, on the basis of previous
assumptions, dcgl1 is set to permit, whereas dcgl2 is undefined.
ince a decision has been taken for cgl1, dec is initially set to
ermit (see line 2 of Algorithm 9), and the decision is propagated
o messages. The propagation is handled by function handleSP (see
ine 7 of Algorithm 9), which, for the considered parameters,
eturns permit. As a consequence, propagateDCG authorizes the
ccess to emailDB and messages.

The decision derived by propagateDCG is in turn propagated
o du where it is combined with the previously derived deci-
ion, resulting in a final decision for du. The decision for du
s then propagated to the data unit components of du, where
he propagation approach is recursively applied. An additional
uxiliary function, denoted propagateDFG, is used to propagate
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the decisions within du, through the depth first visit of du tree
structure. propagateDFG operates on a single resource r of du
tree structure at a time, deriving the final access decision d for
r, on the basis of: (1) the decision d’ related to the resource r’
that precedes r, and (2) the temporary decision td that has been
derived for r during the execution of the policy composition task
(see Section 5.3.2.1). The derived decision d, whose computation
relies on function handleSP (see Algorithm 8), is then propagated
from r to the resources included in r, recursively invoking propa-
gateDFG for each resource. propagateDFG keeps track of the path
of any resource whose final access decision specifies a prohibition
within a collector field that is added to du structure.

Example 13. Let us consider the scenario analyzed in Ex-
ample 12. The decision derived from the policies specified for
emailDB and messages is propagated at data unit level, and then,
at component level. Let us consider the case of du, the data
unit representing the email introduced in Example 4, and let us
assume that a temporary authorization has been derived starting
from the policies specified for du. Such a temporary authorization
is first combined with the permission propagated from collection
messages (see Example 12), deriving the authorization to access
du, and then the derived final decision is propagated to du fields,
such as to field body, where it is combined with the temporary
decision derived from the policies specified for this field (see
Example 9).

Once this step has been completed, du specifies all informa-
tion which is required to derive a view of the target resource
which points out authorized and unauthorized content of the
related original resource. The straightforward view generation is
achieved by traversing du structure by means of a depth first visit,
and marking the unauthorized components.

6. Performance analysis

In this section, we describe the experiments we have car-
ried out to empirically assess how efficiently the proposed ap-
proach allows assessing the impact of a set of policies on data
accessibility. The experiments have been done with MongoDB
(ver. 3.4.5 Community Edition), which has been chosen as it
natively supports MapReduce, and current surveys rank it as
the most popular NoSQL datastore (see http://db-engines.com).
However, any other datastore supporting MapReduce might have
been used as well. The experiments have been executed on a
server equipped with two 16-cores Xeon CPUs, and 128 GB of
RAM, using a cluster-based MongoDB deployment with 16 nodes.
The adopted MongoDB platform has been configured to use the
default WiredTiger Storage Engine, which operates by access-
ing data stored on disk. We have not used the MongoDB’s in-
memory storage engine as the majority of NoSQL systems sup-
porting MapReduce do not provide a similar feature, and we
aimed at considering a representative scenario for our evaluation.
Therefore, in our experiments data are loaded/stored from/on
disk.

The integration of the proposed analysis approach in Mon-
goDB has required to provide a Javascript implementation of all
mapping, reduce by key, finalize functions, as well as the auxiliary
functions used throughout the approach’s tasks. Any MapReduce
task has been implemented as a MongoDB MapReduce query
whose map, reduce and finalize functions have been defined by
providing a Javascript implementation of the corresponding task’s
functions. In contrast, auxiliary functions of the approach, once
implemented as Javascript functions, have simply been added
to the scope of the MapReduce queries. Overall the integration

proved to be a straightforward programming activity that has
Table 3
Analyzed datasets.
Dataset #du #duc F/H Ho/He

Enron 501513 10261538 H He
Restaurants 25359 533975 H He
Media 1769759 12388313 F He
People 1000000 5000000 H Ho
Reddit 904490 30836776 F He
Stocks 4308303 43083030 F He

mainly required to convert the pseudo code of the tasks into
Javascript code.

Six datasets have been used for the experiments: (1) en-
ron, a popular dataset of emails; (2) restaurants, which stores
restaurants reviews; (3) media, a catalogue of videos published
on youtube; (4) people, a dataset of players of an online game;
(5) reddit, which stores metadata related to different forums;
(6) stocks, a collection of data related to the stocks market.
These datasets are available at: https://github.com/ozlerhakan/
mongodb-json-files

In order to equally distribute the documents of these datasets
across the 16 nodes of the cluster, a hash-based sharding strategy
has been adopted, which, for any document collection, uses the
document identifier (i.e., field ‘‘_id’’) as sharding key.

Table 3 shows selected features of the considered datasets: the
number of data units (#du) and data unit components (#duc),
the hierarchical (H) or flat (F) structure of the data units, and
the homogeneity (Ho) or heterogeneity (He) of the data units.11
Each dataset has been mapped to a unifying resource model, by
executing the job unifier (see Section 5.1).

Due to the lack of policy benchmarks for NoSQL systems, the
access to resources collected in the datasets has been regulated
by randomly generated access control policies. The policies are
purpose based [2], specified with the ABAC notation, and bound
to the derived unifying resource models.

Let ds∗ be the unifying resource model derived from a dataset
ds. Policy specification has been achieved by randomly: (1) select-
ing from ds∗ the urps mapping the resources to be protected, (2)
deciding the number of positive and negative policies to be spec-
ified for each urp, and then (3) generating the policy predicates.
The specification has been carried out in such a way that any urp
has 0.5 probability to be covered by at least one policy, and, in
such a case, it includes from 1 to 3 policies (pseudo uniformly
distributed). In addition, any specified policy has probability 0.5
to be positive/negative.

Denoted with Psds the set of policies specified for ds, the
experiments aim at evaluating the time needed for the analysis,
with different configurations of access control options, where
any configuration specifies: a combining option (co), a conflict
resolution strategy (crs), and a policy propagation criterion (ppc).
The configurations are summarized in Table 4.

Fig. 7 shows, for any considered dataset ds and configura-
tion option cfi, the average time required for deriving from the
unifying resource model ds∗ of ds, a view of ds that points out
authorized and unauthorized contents. The proposed measures
for each configuration and dataset report the average duration
related to 10 analysis processes. In our experiments the access
control model has been configured as a closed system.

As visible in Fig. 7, for any dataset, the measured times show a
pseudo constant trend for all configurations, with small variations
of a few seconds. We therefore believe that analysis options have

11 A set of data units is considered homogeneous when all the data units of
the set have the same structure, whereas it is considered heterogeneous, when
there exists at least a pair of data units with different structures.

http://db-engines.com
https://github.com/ozlerhakan/mongodb-json-files
https://github.com/ozlerhakan/mongodb-json-files
https://github.com/ozlerhakan/mongodb-json-files
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Table 4
Configurations of access control options.
cfid co crs ppc

cf1 Any Permissions take precedence Most specific overrides
cf2 All Permissions take precedence Most specific overrides
cf3 Any Denials take precedence Most specific overrides
cf4 All Denials take precedence Most specific overrides
cf5 Any Permissions take precedence No propagation
cf6 All Permissions take precedence No propagation
cf7 Any Denials take precedence No propagation
cf8 All Denials take precedence No propagation
cf9 Any Permissions take precedence No overriding
cf10 All Permissions take precedence No overriding
cf11 Any Denials take precedence No overriding
cf12 All Denials take precedence No overriding

Fig. 7. Policy analysis execution time.

able 5
he average execution time increment between pairs of configurations that only
iffer for the conflict resolution strategy option.
Dataset Average time increment

(ms) (%)

Enron 5501 1,52
Restaurants 4169 2,41
Media 12978 3,63
People 6249 2,21
Reddit 22814 2,63
Stocks 33416 2,61

a small impact on the duration of the analysis process. Task pro-
jector, for its numerous accesses to data unit components during
the recomposition phase, is the main responsible of the measured
times. The recomposition has comparable complexity with dif-
ferent configurations. For any data unit, projector keeps track of
the unauthorizedcomponents (see Section 5.3.2.2). The marking
of any unauthorized component requires to traverse data unit
structure until the searched element is found. The complexity of
view generation is thus affected by the number of components:
(i) in the data unit, and (ii) to be marked as unauthorized. Analysis
options like denials take precedence, which during policy compo-
sition favor deny decisions, tend to raise the complexity of the
view generation and the related execution time (e.g., see cf3 vs
f1 in Fig. 7). In order to better quantify this trend, Table 5 shows,
or any dataset, the average increment of execution time which
as been observed passing from configurations where permits

take precedence has been set, to configurations specifying the
same access control options but the conflict resolution strategy
denials take precedence (e.g., cf5 and cf7). The growth has been
bserved with all datasets, with an average increase of 2,5% of
he execution time.

The measured times primarily depend on the dataset size. The
eterogeneity of the data unit structures has no direct implication
n the analysis complexity, which in contrast is affected by the

umber of layers and components of each data unit. Data units
with flat structure can be more easily recomposed than data units
with hierarchical structure, as policy propagation is limited to a
single layer of analysis. For instance, although dataset media has
ore data units components than enron, the observed times for

hese datasets essentially overlap for any configuration option. In
his case the complexity due to the hierarchical structure of enron
ata units (up to 3 layers), has, as counterpart, a higher number
f data units and components in media.
The measured times show that even with stocks, the biggest

ataset with over 43 millions data unit components, the analysis
s done in 1300 s.

. Discussion

The proposed approach allows deriving views of the data
andled by a NoSQL database, which show, on the basis of the
pecified access control policies and access control options, the
esources accessible in a considered context by a user. The ap-
roach supports access control policies defined according to mul-
iple DAC models and configuration options, and it is general
nough to be used with all NoSQL systems providing support to
apReduce computation.
On the basis of the derived views, security administrators may

ecide to restrict or relax the specified policies or to modify the
ccess control options with the aim to grant or deny the access,
o given users, to specific portions of the managed data.

The proposed approach could be further extended, by measur-
ng the effects of the specified policies and access control options
n the protected data trough a set of metrics, such as for instance
i) the total number of data units that have been marked as
nauthorized; (ii) the percentage of data units which, due to the
pecified policies, cannot be accessed; (iii) the total number of
ata unit components which have been analyzed; (vi) the number
f unauthorized data unit components; (v) the percentage of
nauthorized data unit components; and (vi) the average number
f data unit components per data unit. The computation of these
easures can be easily achieved by complementing the proposed
nalysis approach with an additional phase, which follows the
iew generation step. For example, the derivation of the exem-
lified metrics requires basic grouping operations, that can be
traightforward encoded into a MapReduce task.

. Related work

In the last years, numerous research efforts have been devoted
o the study of policy analysis approaches. The research has been
rimarily oriented to approaches aiming at verifying correct-
ess, supporting policy integration, detecting inconsistencies and
edundancies, and reasoning on completeness of policy sets.

Several proposals use formal methods for verifying policy cor-
ectness. For instance, a formal specification language for access
ontrol policies has been proposed in [20], whereas in [21] a
odel checking algorithm has been defined on top of the notation
roposed in [20] to assess permissions granted by access control
olicies.
Other contributions rely on Datalog based technologies for

nalysis purposes. For instance, in [22] a class of Datalog pro-
rams is used for the modeling and analysis of Relationship-based
ccess Control (ReBAC) policies. A Datalog-based approach is also
iscussed in [23], consisting of a policy specification language for
ecentralized composite access control systems, and a reasoning
ramework for the specified policies.

Other work used graph-based analysis strategies. For instance,
n [24] an approach is proposed which targets the analysis of
ategory based access control policies. The approach allows de-
iving properties of the modeled environments, thus easing the
erification tasks for security administrators.
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A relevant class of policy analysis approaches are those fo-
cused on Answer Set Programming (ASP), which translate XACML
policies [25] to ASP programs, and use ASP solvers as reasoning
tools (e.g., [26,27]). Other work used binary decision diagrams
(e.g., [28]), and data mining techniques (e.g., [29]) to identify
policy anomalies.

Other proposals (e.g. [30]) have focused on the analysis of
policy similarity. For instance, a similarity metric has been pro-
posed in [30], which takes into account categorical and numeric
attributes. Lobo et al. [30] claim the practicality of their approach,
which allows the efficient identification of similar policies in large
policy sets. Policy similarity has also been studied in [31], where
an approach to the integration of access control policies has been
proposed. However, in this case, rather than deriving similarity
measures, policies are classified with respect to the set of requests
they authorize.

In the literature, policy integration appears as an extensively
investigated analysis dimension. For instance, Rao et al. [32]
propose an algebra supporting the specification of integration
constraints, and a toolkit built on top of the algebra which targets
the integration of XACML policies. A framework, denoted EXAM,
has been proposed in [33], which combines different approaches
with the aim to provide a comprehensive policy analysis solution.
The analysis is achieved by means of SAT solvers and Multi-
Terminal Binary Decision Diagrams based techniques. Finally, [34]
proposed a tool, called VisABAC, which provides a visual interface
to the evaluation of ABAC policies.

All above mentioned approaches aim at analyzing proper-
ties of policy sets (e.g., policy similarity) without considering
the effects of policies and related access control options on re-
source accessibility, which is, in contrast, the focus of our paper.
Our MapReduce-based approach integrates the implementation
of well known conflict management, policy composition, and
decision propagation mechanisms (e.g., see [12,17]) finalized at
evaluating, for a considered set of policies and related access
control options, the accessibility of data handled by NoSQL sys-
tems. A key feature of the approach is that it allows analyzing
data accessibility at fine grained level operating with heteroge-
neous schemaless data resources of NoSQL systems that refer to
the main data models. In addition, the supported access control
policies can be specified according to the main DAC models. To
the best of our knowledge, we are not aware of other policy
analysis approaches that allow assessing resource accessibility
within NoSQL datastores.

9. Conclusions

This paper proposed an approach to evaluate the effects of
access control policies on schemaless data within NoSQL data
management systems. The proposed approach supports the major
existing DAC models, and it can be easily extended to resources
modeled through traditional data models (e.g., relational). The
proposed approach allows evaluating the effect of a set of policies
on the protected resources, which is one of the core analysis
services that should be provided to security administrators. Ex-
perimental results show the efficiency of the proposed solution,
within a variety of scenarios, and even with datasets including
millions of data units.

The work described in this paper is progressing in several di-
rections. We are working at an extended version of the proposed
analysis approach integrating different metrics which comple-
ment the derived views with measures quantifying the effects of
the specified policies and access control options on the accessibil-
ity of considered data resources along different dimensions (see
Section 7). With the aim to enhance the experimental evaluation
proposed in this work, we are developing an implementation
of the proposed approach for HBase (https://hbase.apache.org),
and we plan to consider other popular datastores supporting
MapReduce. We are also focusing on extending the framework
to be used within federated systems, and we are investigating
mechanisms for the XACML-based deployment of access control
policies.

As a future work we also plan to investigate an enhanced
version of the approach supporting incremental evaluation strate-
gies. This would prevent repeating the whole analysis in case new
policies are added to a considered policy set.
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