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1. Introduction

Recent emergencies, such as the COVID-19 pandemic, have
shown that, due to scarcely information sharing, emergency pro-
tocols often fail in fully achieving their goals. For instance COVID-
19 contact tracing has been pointed out by the World Health Or-
ganization as a strategic tool for contrasting SARS-CoV-2 diffu-
sion and reducing COVID-19 mortality.! However, manual contact
tracing methods proved scarcely applicable, highly demanding in
terms of time and human resources, and overall impractical with
a high number of new daily cases. Moreover, people’s ability and
willingness to derive and disclose sensitive information, as vis-
ited places and persons met, have further hindered their applica-
tion and efficacy. Contact tracing apps have addressed the scalabil-
ity and performance issues of manual methods. However, due to
a scarce perception of enforced data protection, in several west-
ern countries, citizens proved unavailable to install and use these
apps (Akinbi et al., 2021). As a consequence, the efficacy of con-
tact tracing has been undermined by limited population coverage.
These facts suggest that efficient data sharing is a key requirement
for emergency management, and should be complemented with
proper data protection tools.

* Corresponding author.
E-mail addresses: pietro.colombo@uninsubria.it (P. Colombo),
elena.ferrari@uninsubria.it (E. Ferrari), edtumer@uninsubria.it (E.D. Timer).
1 https://www.who.int/publications/i/item/contact- tracing- in- the-context-of-
covid-19.
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Efficient emergency management starts with timely identifica-
tion of an emergency through the analysis of what has occurred in
a target scenario and requires that all resources needed to properly
handle the identified emergency are timely accessed by authorized
subjects. Internet of Things (IoT) technologies provide valid support
to the development of efficient data sharing and analysis services
and thus appear well suited for building emergency management
applications. Data can be gathered by manifold types of smart de-
vices which are nowadays available for different domains. For in-
stance, for what healthcare is concerned, medical wearables and
IoT technologies are enabling new forms of diagnosing and care
and allow the detection of emergency situations. As an example,
during the COVID-19 pandemic, the OLVG Hospital in the Nether-
lands started to experiment with wearable biosensors able to de-
tect possible deterioration of suspected or confirmed COVID-19 pa-
tients.> The proposed monitoring framework aimed at limiting the
interaction of patients with the medical personnel, favoring at the
same time a prompt intervention, when required.

The management of an emergency typically also requires grant-
ing exceptional privileges to subjects, which in an ordinary situa-
tion would not be permitted. For instance, in an ordinary situation,
a physician responsible to provide treatment has to ensure that
valid consent has been obtained from the patient or a delegated
person before the treatment can begin. However, if an emergency

2 https://www.bioworld.com/articles/435384- philips-debuts-wearable-vitals-
sign-patch-to-monitor-covid- 19-patients-for-early-intervention.
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occurs and the treatment is finalized to save the patient life, it can
be provided without consent. Nonetheless, all granted exceptional
privileges have to be immediately revoked as soon as the emer-
gency is over.

The enforcement of similar controls within IoT applications re-
quires mechanisms able to regulate the access to data gathered by
IoT devices. Although a variety of access control models for IoT ap-
plications have been proposed in the literature (e.g., see Qiu et al.,
2020 for a compendium), just a few of them allow regulating data
sharing in emergency situations (see Section 9). All these propos-
als rely on a permission management approach known as break
the glass (BtG), according to which, during an emergency, a user
requests and then gains access to resources that would not be per-
mitted to him/her in normal conditions. Although extremely flexi-
ble, BtG approaches have drawbacks. For instance, the accesses ex-
ecuted after breaking the glass are normally traced for later re-
views (Schefer-Wenzl et al., 2014), opening the way to possible
information leakage. In addition, the abuse of BtG policies can
lead the system to an unsafe state (Carminati et al., 2013), thus
sufficient ordinary access control policies should always be speci-
fied to minimize the necessity of breaking the glass. Although not
targeting the IoT domain, complementary approaches to regulate
information sharing in emergency situations have been proposed
(Carminati et al., 2013; Kabbani et al.,, 2014), where emergency
policies were introduced to grant subjects all privileges needed for
the management of specific emergencies, as soon as they occur.
Since emergency management plans are expected to be a priori
defined, emergency policies could be specified in such a way to
fulfill information-sharing requirements elicited from the associ-
ated plan. As an example, an a priori defined protocol is expected
for the above-mentioned patient monitoring scenario, which, un-
der specific emergencies, allows medical personnel with certain
functions to access patients’ physiological data (e.g., in case of a
severe cardiovascular issue, the privileges should be granted to car-
diologists). Permission management based on emergency policies
allows shorting data access time, as no request to override permis-
sion has to be issued, and data can thus be received by authorized
subjects as soon as the emergency begins. However, to the best
of our knowledge, none of the previous approaches targets the IoT
domain.

In this paper, we do a step to fill this void, by proposing an
Attribute-based Access Control (ABAC) framework to regulate data
sharing within MQTT-based IoT applications in ordinary and emer-
gency situations. The choice of targeting MQTT is motivated by the
wide adoption of this protocol within IoT applications for inter-
device communication, whereas ABAC has been selected as it has
already been profitably used to regulate data sharing on the basis
of context properties (e.g., see Colombo and Ferrari, 2018; Colombo
et al., 2021), which makes it a good fit for emergency policy sup-
port. As a matter of fact, policy selection requires evaluating ac-
cess request contexts, checking whether the subject that aims at
sending and receiving an MQTT message is involved in emergency
situations.

The proposed system is an extension of the framework we pro-
posed in Colombo and Ferrari (2018) that supports ordinary fine-
grained access control policy enforcement in MQTT environments.
Key novel features introduced by this paper include:

- modeling support required to: i) define the events that trigger
an emergency, ii) bind events to MQTT messages, iii) specify
emergency situations along with their possible evolution, and
iv) specify emergency policies;

emergency management functionalities, that is, the ability to: i)
detect occurrences of modeled events starting from the analysis
of MQTT control packets exchanged in a monitored application,
and ii) identify the possible evolution of emergency situations.
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For event detection, we leverage on a complex event processing
engine;

- access control capabilities, that is, the ability to enforce both
regular and emergency access control policies which apply to
an access request issued in a specific context.

To show the feasibility of the proposed approach we apply our
framework to a case study of pseudo-realistic complexity related to
an MQTT-based health monitoring application employed in a nurs-
ing home during the COVID-19 pandemic. Our framework is here
employed to regulate information sharing within the considered
application, with the aim to ensure that in ordinary and emer-
gency situations data can only be accessed by authorized subjects.
The proposed case study allows us to exemplify the definition of
all modeling artifacts required to configure the framework for the
considered application. The case study has also been employed for
an early performance evaluation of the proposed approach, overall
showing a reasonably low enforcement overhead.

The remainder of the paper is organized as follows.
Section 2 introduces a running scenario that will be used
throughout the paper to exemplify basic framework concepts,
and which will be also developed into a case study. In Section 3,
we introduce background technologies instrumental for the frame-
work definition. Section 4 presents key concepts related to the
proposed event modeling approach, whereas Section 5 introduces
the foundations of our access control model. Section 6 provides
an overview of the framework architecture and shortly presents
the rationale of the enforcement mechanism, which is then more
thoroughly analyzed in Section 7. In Section 8 we present a case
study, an early experimental evaluation of the framework per-
formance, discussing possible addressing strategies for identified
framework limitations. Section 9 presents a short survey of related
work, whereas Section 10 concludes the paper.

2. Running example

Let us consider an IoT application that aims at monitoring the
health conditions and behaviors of patients hosted in a nursing
home during the COVID-19 pandemic. IoT devices worn by pa-
tients and sensors deployed in the rooms where patients live al-
low the real-time monitoring of patients’ conditions. For instance,
body temperature and respiratory rate are vital signs of patients
that can be acquired by wearable biosensors, whereas the location
of patients can be collected by indoor tracking bracelets. The ac-
quired data are stored, and can therefore be visualized and ana-
lyzed by dedicated monitoring apps used by medical personnel of
the nursing home, by selected relatives of the patients who can
check the conditions of their kin, and even by self-sufficient pa-
tients who wish to check their own conditions. Medical personnel
has access to physiological and environmental data, whereas pa-
tients and relatives have limited authorizations.

Patients can occasionally face emergency conditions, which re-
quire a prompt reaction from the medical personnel. To effec-
tively manage some emergencies, it is required to share patients
data in critical conditions with external physicians with the aim
to promptly identify proper treatment. The monitored data is
also used to contrast COVID-19 diffusion. Temperature and oxy-
gen saturation levels reveal potential COVID-19 symptoms and
could be used to notify physicians to make a test. The access to
proximity data of infected patients, and the immediate isolation
of potentially infected guests, allow contrasting COVID-19 diffu-
sion (Ouslander and Grabowski, 2020).

Patients data has to be accessed by authorized users in any pos-
sible situation. The considered scenario emphasizes the need for
special policies to enforce access control during emergencies that
we will illustrate in the following sections.
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Table 1
MQTT control packets.

Control packet  Acronym  Description

CONNECT CPeN Connection request
CONNACK CPca Connect acknowledgment
PUBLISH CPrg Publish message

PUBACK CPra Publish acknowledgement
PUBREC CPPRC Publish received

PUBREL CPPRL Publish release

PUBCOMP Cprc Publish complete

SUBSCRIBE CPsp Subscribe to topics

SUBACK CDsa Subscribe acknowledgement
UNSUBSCRIBE Cpus Unsubscribe from topics
UNSUBACK CPua Unsubscribe acknowledgement
PINGREQ CPprQ PING request

PINGRESP CPpRrs PING response

DISCONNECT CPps Disconnect notification

3. Background

In this section, we shortly present key aspects of MQTT, Com-
plex Event Processing, and the access control model for MQTT
environments we proposed in Colombo and Ferrari (2018), since
they are instrumental for the definition of the proposed emergency
management framework.

3.1. MQIT

MQTT is a popular protocol for IoT applications and can be used
in a variety of IoT scenarios (Mishra and Kertesz, 2020). It allows
peers of an IoT ecosystem to communicate by means of the pub-
lish/subscribe paradigm. In an MQTT environment, multiple clients
exchange messages by means of a message broker. MQTT clients
connect to an MQTT broker to send or receive application mes-
sages. Clients can subscribe to the reception of messages on the
topics caught by a topic filter specification tf, or can request the
MQTT broker to publish messages on given topics. MQTT brokers
route messages on the basis of the associated topic. A topic fil-
ter, in turn, is a textual expression, which, by employing special
characters, denoted as wildcards, allows referring to multiple top-
ics. Whenever a broker receives a publishing request on a topic t,
it forwards the message to any client that subscribed to the recep-
tion of messages on topics that include t.

Broker and clients interact by exchanging control pack-
ets (Banks et al., 2019). The list of MQTT control packets is reported
in Table 1.

Let us refer to the broker of an MQTT environment as b. In or-
der to connect with b, for sending or receiving messages, an MQTT
client ¢ sends a connection request cpcy to b. On receipt of this
packet, b evaluates the request and sends back an acknowledg-
ment cpcs to ¢ which specifies whether the request has been ac-
cepted and thus a connection has been opened. Once a connection
is established, ¢ can request to publish an application message on
a topic t with a payload p, by issuing a publishing request packet
cppg- In addition, ¢ can also request the reception of messages on
topics that match a topic filter tf, by sending a subscription request
packet cpsg to the broker.

The topic t referred to in a packet cppg is a string composed of
a sequence of | separated tokens, referred to as topic levels. The
protocol does not constrain the format of a message payload p.
However, a predominant data-interchange format adopted in nu-
merous MQTT-based applications is JSON (Bray, 2017). Therefore, in
this paper, we assume the payload is formatted as a JSON object®
and thus represented as a set of hierarchically organized key-value

3 https://www.json.org/.
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Table 2
An abstract event algebra for complex event speci-
fication (Giatrakos et al., 2020).

cel= pe Primitive Event
ceq ; cey Sequence
ce; V cep Disjunction
ce; A cey Conjunction
ce* Iteration
- ce Negation
ay (ce) Selection
Tm(ce) Projection
[ce]% Windowing from T; to T,

pairs. An interested reader can refer to Banks et al. (2019) for fur-
ther details on the MQTT protocol.

3.2. Complex event processing

A complex event processing (CEP) system is a framework whose
primary aim is to understand what is happening in a system un-
der analysis (Giatrakos et al., 2020). A CEP system is composed
of a set of event sources, a CEP engine, and a group of event
sinks (Cugola and Margara, 2012). Event sources are components
devoted to: 1) identify changes of monitored system properties,
and 2) notify to the CEP engine of a primitive event that denotes
the change. A CEP engine is a tool that identifies the occurrence of
specific situations in the monitored system. Situations are modeled
as patterns of events, referred to as complex events, which occur in
a time interval in the monitored system. Event sinks are notified
of the occurrence of complex events by the CEP engine and are
configured to promptly react to the identified conditions. A notifi-
cation is an object with fields specifying a time annotation, which
refers to the event generation time, a payload, which specifies the
event content and is structured as a data record, and a type, which
constrains the structure of the payload (Cugola and Margara, 2015).

Example 1. Let us consider a thermometer th which is used to
monitor a patient’s body temperature. The events generated by this
event source may have payloads composed of attributes tempera-
ture and deviceld, which respectively denote the measured temper-
ature and the device identifier. A measured temperature of 37 °C at
time ts can thus be represented as a JSON object: Temperature@ts:
{“temperature”:37, “deviceld”:th }, where @ts denotes the time an-
notation, and {“temperature”: float, “deviceld”: string} the associated
type.

Complex events are usually specified using platform-specific
languages. Although no universally recognized standard mod-
eling language exists for specifying complex events, the ma-
jority of CEP engines allow specifying them within SQL-like
queries (Giatrakos et al., 2020).

In order to specify complex events abstracting from platform-
specific details, in this paper, we use the abstract event algebra
presented in Giatrakos et al. (2020), whose operators are listed
in Table 2.

A complex event ce is therefore defined by the composition of
primitive and complex events, using a variety of operators (e.g, se-
quence (;), disjunction (v), conjunction (A)).

Additionally, the iteration operator (*) allows the specification
of a complex event as a set of events of the same type that occur
repeatedly. In this case, ce occurs when the number of referred oc-
currences is reached. A complex event ce can also be defined by
negation (—) of another event ce’, meaning that ce only occurs if ce’
does not occur. Finally, ce can be modeled as a selection or pro-
jection of other events. The selection operator (oy) filters events
whose attribute values satisfy a condition 8, whereas the projec-
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tion operator (7;) extracts only part of the attributes, according to
a set of mapping expressions m.

Any specification of a complex event ce can refer to events that
occur in a specific time interval, specified through the window op-
erator |.. ]%

Example 2. Let us assume that sensors worn by patients periodi-
cally issue a primitive event RespiratoryRatepe, which simply noti-
fies the observed number of breaths per minute (bpm). A complex
event Breathlessness.. which shows shortness of breath episode ob-
served in the last 2 days, can thus be defined as:

(0 ppm>25(RespiratoryRatepe)) 2% days

3.3. Access control in MQTT environments

In this section, we shortly present the ABAC model for MQTT
environments we proposed in Colombo and Ferrari (2018).

Subjects, objects, and environments are the basic building
blocks of the proposed model. A subject s represents a client
which, possibly on behalf of a user, connects to an MQTT broker
with the aim of sending or receiving messages. s is characterized
by attributes, such as the client identifier (cID) and, optionally, by
a user identifier (uID), which denotes the user on behalf of whom
client cID operates. Subjects who have similar access patterns can
be classified into subject groups.

Application messages are the protection objects of the consid-
ered model. Therefore, control packet fields, such as the message
topic t and payload p are object attributes. Lastly, an environment
e represents the context within which an access request is issued,
and could be characterized by attributes such as location, time, and
access purpose. For the sake of simplicity, in this paper, we only
consider time as environment attribute.

Data sharing is regulated on the basis of access control poli-
cies, specified by security administrators, which grant subjects the
read/write access to messages on specific topic(s).*

Access control policies grant privileges under satisfaction of
boolean expressions, denoted as parametric predicates, built by
composition of subject, object and environment attributes, and sets
of predefined operators and functions.’

Definition 1 (Access control policy (Colombo and Fer-
rari, 2018)). An access control policy p is a tuple (s, tf, exp,
pr), where s refers to the subject(s) to whom p assigns privileges,
denoting the identifier of a client, user, or user group, tf specifies
a topic filter expression, which allows selecting by topic the
protected messages, whereas pr specifies the read [write privilege
granted by p, if the parametric predicate exp is satisfied.

Example 3. Let us consider an access control policy acp;, which
authorizes close relatives of patient p; to access his/her physiolog-
ical data, and a second policy acp,, which grants medical personnel
access to every monitored data of any nursing home patient. Policy
acp; can be specified as (relatives::p;, p1/physiological/#, true, read),
where relatives::p; denotes the group of users authorized by acp;
to read messages that specify physiological data of p1. Similarly,
acp, can be specified as: (medical_personnel, #, true, read).

To empower users with a finer-grained control on their data,
the model in Colombo and Ferrari (2018) allows the specification of
user preferences, namely user-defined policies that allow a user to
further constrain the read privileges granted by the access control
policies specified by security administrators.

4 Read and write accesses respectively denote the privileges to send | receive
messages on given topics.

5 In Colombo and Ferrari (2018), we consider mathematical operators (>, <, =, +,
—, *, [,%), logical operators (A, v, =), set operators (e, C, <, N, U, \), logical quanti-
fiers (V, 3), and predefined functions that allow the processing of attributes values.
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Definition 2 (User preference (Colombo and Ferrari, 2018)). A user
preference up is a tuple (uid, tf, sub_exp), where uid specifies the
identifier of a user who wishes to protect the access to messages
published by any of the clients he/she handles, tf specifies a topic
filter expression which refers to the topics of the messages pub-
lished on behalf of uid to which up applies, whereas sub_exp is a
parametric predicate specifying a precondition to the receiving of
these messages.

Example 4. Let us now consider a user preference up specified by
patient p; who wishes to limit the read access to his/her respira-
tory rate to medical personnel. up restricts the privileges granted
by acp;, and can be specified as: (p;, p1/physiological/respiratory,
s.gid==medical_personnel).

The ABAC framework proposed in Colombo and Fer-
rari (2018) provides an enforcement monitor which can be
easily integrated into existing MQTT environments and which can
operate with any MQTT client and broker.

A high-level view of the framework architecture (Colombo and
Ferrari, 2018) is shown in Fig. 1. The monitor operates at the
external interface of a trusted network where the broker and a
NoSQL datastore, that keeps track of access control metadata, are
deployed, whereas clients operate within untrusted external net-
works.

A client publishing request is intercepted by the monitor and,
if at least one applicable policy is satisfied, the monitor authorizes
the request. Otherwise, the publishing request is denied and the
application message is blocked. If the publishing request is autho-
rized by the specified access control policies, the monitor checks
the existence of preferences specified by the user on behalf of
whom the publishing request has been issued. The monitor em-
beds all applicable preferences into the payload of the message and
sends it to the broker. The broker, on the basis of the referred top-
ics, routes the received packets to the rightful subscriber clients.
Any forwarded packet is again intercepted by the monitor, which
checks whether the candidate’s receiver client can actually receive
the message. The monitor evaluates the user preferences embed-
ded in the message payload. If no preference is satisfied, the packet
is immediately blocked. In contrast, if at least one preference is
satisfied, the monitor checks the access control policies that regu-
late the reception of messages by the client. If at least one access
control policy authorizes the reception, the monitor removes the
embedded user preferences from the message payload and sends
it to the client. We refer the interested reader to Colombo and Fer-
rari (2018) for more details.

4. Event modeling

The proper management of an emergency requires identifying
and modeling the events that cause the emergency. Therefore, in
this section, we propose an approach to model events related to
messages exchanged in a monitored MQTT environment.

Let us start to focus on the modeling of primitive events, which
is achieved through the specification of primitive event types. A
primitive event type specifies: 1) the structure of a class of primi-
tive events, 2) the binding criteria of the considered events to the
control packets exchanged in the ecosystem, and 3) the criteria to
derive the event starting from the structural characteristics of the
bound control packets.

A primitive event type is therefore modeled as a tuple (pet, adc,
bcr, adf), where pet refers to the name of the event type, adc is a
set of pairs (id, type) that specify the attributes that compose any
event of type pet, bcr specifies the binding criteria, namely the con-
ditions for a cppg control packet to trigger the generation of events
of type pet, whereas adf is a set of pairs (id, exp), where the iden-
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Fig. 1. An high-level view of the architecture in Colombo and Ferrari (2018).

tifier id refers to an attribute declared within adc, whereas exp is
an initialization expression.

Boolean expressions that specify binding criteria are defined by
referring to any structural property of a candidate control packet
cppg, such as, for instance, the topic, the whole payload, or a pay-
load attribute, and employing arithmetical, set and logical opera-
tors and quantifiers, as well as predefined functions. Binding cri-
teria specify the required characteristics of a bound control packet
t, referring to t like it was a JSON object (e.g., t.payload refers to
the payload of the control packet). The same specification criteria
are also employed for the initialization expressions within compo-
nent adf, allowing one to refer to t's properties, as well as to the
subject, object and environment attributes related to the publish-
ing request context of t. These attributes are referred to as fields
of the objects s, o, and e, which represent the subject, object and
environment associated with the publishing request t, respectively.

Example 5. Let us now consider the specification of a prim-
itive event type Temp for messages published by MQTT ther-
mometers. Let us assume that any publishing request that in-
cludes “temperature” in the topic name is bound to a primitive
event of type Temp, in turn defined as a tuple (Temp, {“temp”:
float, “time”: long, “pID”: string}, t.TopicName.includes(“temperature”),
{“temp”:t.Payload.temperature, “pID”: o.patientID, “time”: e.time}). It
is worth noting that the initialization of the attributes is achieved
referring to internal properties of the message payload,® and to ob-
ject and environment attributes.

Let us now consider the modeling of complex events. Similar to
primitive events, their modeling is achieved through the specifica-
tion of an event type.

A complex event type is a tuple {(cet, adc, ets, exp), where cet
specifies the name of the event type, adc is a set of pairs (id, type)
which specifies the attributes composing the payload of any event
of type pet, ets is a set that includes the list of identifiers of primi-
tive and complex event types referred to in the specification of cet,
whereas exp is an expression defined with the abstract event alge-
bra introduced in Section 3.2, which allows initializing the value of
attributes declared within adc. exp is specified by referring to the

6 As already mentioned in Section 3.1, we assume that message payloads are
structured as JSON objects.

event types in ets, and employing the event algebra operators (i.e.,
P VLAY, =, g, Tm[ 112, see Section 3.2).

Example 6. Let us now consider the specification of complex event
type Fever, used to characterize events denoting that a specified
patient has had a fever in the last 2 days. Fever can be de-
fined as: (Fever, {“pID": string, “temp”: float}, {Temp}, (otemp >
3g(Temppe) 00% days), where Temp is the primitive event type in-
troduced in Example 5, and Tempp. is a primitive event of type
Temp.

Similarly, let us assume that the primitive event type
RespiratoryRate is defined as: (RespiratoryRate, {“bpm”: float,
“time”:long, “pID”: string}, t.TopicName.includes(“respiratoryrate”),

{“bpm”: t.Payload.bpm, “pID”: o.patientID, “time”: e.time}). Referring
to Example 2, the complex event type Breathlessness used to rep-
resent events notifying that a patient has had shortness of breath
episodes in the last 2 days can be specified as:

(Breathlessness, {“pID”: string, “bpm”: float}, {RespiratoryRate},
(0 bpm > 25(RespiratoryRatepe ) 2o ).

now - 2 days
The sets of primitive and complex event types specified for an
application scenario are hereafter referred to as PET and CET, re-
spectively.

5. Access control model

In this section, we present an extension of the ABAC model
introduced in Section 3.3, which allows regulating data sharing
within MQTT-based IoT environments in ordinary and emergency
situations.

The proposed model is built on top of some key conceptual
elements, respectively denoted as emergency situation, emergency
evolution, and action, which are then used to define emergency de-
velopment plans, emergency scenarios, and corresponding emergency
policies.

An emergency situation is a critical situation that happens sud-
denly and requires prompt management to avoid harmful results.
An emergency can evolve into another emergency, possibly more
serious or mild, or it can be solved. Any emergency is character-
ized by a severity level that specifies its severity. In our model,
an emergency Situation is a single stage of an emergency scenario
subject to possible evolution. Therefore, we model an emergency
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situation ems as a pair (sid, lev), where sid specifies the emergency
identifier, whereas lev denotes the related severity level. A severity
level is an integer value in the range [L,- Lmax], configurable by
the system administrator at specification time (where L,;;,Lmax€ N,
and 1<Lip<Lmax)-

In contrast, an action is a task that converts an event of com-
plex type into an MQTT publish request packet cppg“t?, and for-
wards it to the MQTT environment.” An action is modeled as a
tuple (aid, cet, tp, pl), where aid and cet respectively specify the
identifier of the modeled action and of the referred complex event
type, whereas tp and pl are expressions that allow the specification
of the topic and payload of cppgEF, respectively. More precisely, tp
is an initialization expression built referring to any attribute in the
payload of events of type cet (see Section 4), whereas pl is a set
of pairs (id, exp), each specifying an attribute of the payload of
cppgEP. Component id specifies the name of an attribute, whereas
exp is the related attribute initialization expression.

Example 7. Let us now consider the specification of action Severe-
BreathlessnessNotifier, which, upon detecting an event of type Sev-
ereBreathlessness denoting a serious form of shortness of breath,
publishes an MQTT message which notifies the detected criti-
cality. SevereBreathlessness can be straightforwardly specified by
restricting the definition of Breathlessness in Example 6. Sev-
ereBreathlessnessNotifier is specified as (SevereBreathlessnessNotifier,
SevereBreathlessness, “criticality/severebreathlessness”, {“patientld”:
SevereBreathlessnessce.pID, “time”: SevereBreathlessnessce.time, “bpm”:
SevereBreathlessnessce..bpm}). The execution of this action causes
the publishing of a message on topic criticality/severebreathlessness,
with a payload characterized by fields that map those of the de-
tected event.

An emergency evolution is a transition between a pair of emer-
gency situations, which occurs when, due to the continuous analy-
sis of the messages exchanged in the MQTT environment operated
by the CEP system, an event of complex type is detected. More for-
mally:

Definition 3 (Emergency evolution). An emergency evolution ev is
a tuple (cet, src, trg, act), where cet specifies the identifier of a
complex event type in CET (see Section 4), src and trg respectively
refer to the identifiers of the emergency situations that are left and
entered when an event of type cet is detected,® whereas act refers
to the identifier of an action executed when pr occurs (or L if no
action has to be executed).

The occurrence of events in the monitored MQTT environment
can cause: i) the starting of an emergency situation, ii) the evo-
lution of an emergency situation into a more severe or mild one,
or even iii) the resolution of an emergency situation. In order to
model the possible evolution of an emergency case we hereby in-
troduce the concept of emergency development plan.

Definition 4 (Emergency development plan). An emergency devel-
opment plan edp is a tuple (edpi, Ev) where edpi is the identifier
of the emergency development plan, whereas Ev is a set of emer-
gency evolutions depicting the possible developments of an emer-
gency case.

The definition of an emergency development plan edp has to
satisfy some well-formedness rules. An evolution ev in the set Ev
of edp, referred to as edp.Ev, can only refer as end points L or an

7 Actions turn MQTT clients into event sinks (see Section 3.2), which possibly
could be programmed to react to the detected events.

8 src [ trg could also refer to value L to denote that the occurrence of an event
of type cet activates | terminates an emergency scenario. Further details are pro-
vided in the remainder of this section, where we present the concept of emergency
scenario.
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emergency situation. Moreover, any pair of evolutions that refer to
the same emergency situation within component src, have to spec-
ify events of different type within component cet. The same con-
straint applies to a pair of evolutions which refer to L as source.

In order to intuitively represent any possible evolution of the
emergency situations referred to by an emergency development
plan, we represent them as state machine (stm) diagrams, where
the emergency situations are depicted as states and the evolutions
as transitions. Each state is labeled with the identifier of the mod-
eled emergency situation, whereas each transition is labeled with
a complex event of a type referred to by the related evolution.

Example 8. Let us consider the emergency development plan Pul-
monarylssues, which is characterized by the emergency situations
Dyspnea, LowOxygenSaturation, and DyspneaOxygen, where Dysp-
nea denotes a breathing discomfort, LowOxygenSaturation a low
level of oxygen-saturated hemoglobin in the blood, whereas Dys-
pneaOxygen a combination of the previous cases. Two evolutions
map the activation of the modeled emergency case, respectively
entering the emergency situations Dyspnea and LowOxygenSatura-
tion, and other two its deactivation, which exits the same emer-
gency situations. Additional evolutions allow the transition from
the emergency situation Dyspnea to DyspneaOxygen, and back, as
well as from LowOxygenSaturation to DyspneaOxygen, and back. Let
us assume that the above-mentioned evolutions refer to events of
type Breathlessness, BelowThreshold02, NormalBreathRate, and Nor-
malO2Level, and, also, for the sake of simplicity, that no evolution
refers to actions. This scenario is depicted by the state machine
shown in Fig. 2.

In contrast, the concept of emergency scenario is used to de-
note an emergency case that involves a specific set of subjects, and
whose evolution is depicted by an emergency development plan.

Definition 5 (Emergency scenario). An emergency scenario es is a
tuple (esi, edp, sf), where esi is the emergency scenario identifier,
edp refers the identifier of the associated emergency development
plan, whereas sf is a logic predicate, referred to as subject filter,
which specifies under which conditions a subject is involved in es.
Like parametric predicates (see Section 3.3), subject filters are de-
fined by composition of subject attributes using mathematical and
logical operators.

At any point of the execution, an emergency scenario es is ei-
ther inactive or in one of the emergency situations referred to by
the evolutions of the emergency development plan edp. More pre-
cisely, at specification time an emergency scenario es is inactive
and maintains this state until an event: (a) of type cet referred
to by an evolution ev in edp.Ev, and (b) which refers to L as src
component, and to an emergency situation ems as trg component,
occurs. The event triggers the activation of the emergency scenario,
and the entrance in the emergency situation ems, which is then re-
ferred to as the new current stage of es. Afterward, when an event
occurs, which is referred to by an evolution ev’ among the possi-
ble evolutions of ems (i.e., any evolution that refers to ems within
component src), the current stage of the emergency scenario is up-
dated. More precisely, if component trg of ev’ refers to L, the emer-
gency scenario is disabled, whereas if it refers to another emer-
gency situation, such as, for instance, ems’, this new emergency is
entered, and the current stage of es is updated to ems’.

It is worth noting that our model allows the specification of
multiple emergency scenarios per single application, therefore a
subject could be referred to by different emergency scenarios, as
well as by no scenario. In addition, multiple emergency scenar-
ios defined for an application could specify the same development
plan, but different subjects.
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Fig. 2. The stm diagram corresponding to the emergency development plan Pulmonarylssues.

Example 9. Let us consider the definition of the emergency sce-
narios es; | es,, respectively specifying the possible involvement
of patient Bob |/ Mary and of the medical staff operating in
the nursing home, in emergency cases modeled by the emer-
gency development plan Pulmonarylssues (see Example 8). Accord-
ing to Definition 5, es; can be specified as (es;, Pulmunarylssues,
(s.gid=patient A s.uid=Bob) v s.gid=medical_personnel), and simi-
larly, es, as (es,, Pulmunarylssues, (s.gid=patient A s.uid=Mary) v
s.gid=medical_personnel). Although these emergency scenarios re-
fer to the same development plan, they represent emergency cases
related to two distinct patients, therefore, at any point in time, the
current stage of es; could be different from the one of es.

Let us now consider the case of a subject s who issues an access
request ar. If at ar request time no emergency scenario refers to s,
or all emergency scenarios which refer to s are inactive, s is said
to be in an ordinary situation, and therefore ar is regulated by the
access control policies introduced in Section 3.3, which from now
on are referred to as ordinary policies.

In contrast, if at ar request time at least one of the emergency
scenarios that refer to s is active the request ar is controlled by
emergency policies. Emergency policies regulate the ability of a sub-
ject involved in one or more emergency scenarios to send or re-
ceive MQTT messages.

Emergency policies are formally defined as follows.

Definition 6 (Emergency policy). An emergency policy ep is a tu-
ple(s, tf, exp, pr, esf, stf), where s, tf, exp, pr correspond to the
homonym components in Definition 1, esf is an emergency sce-
nario filter, namely an expression built referring to emergency sce-
nario properties, resulting in a set of emergency scenarios that
specify the same emergency development plan, whereas stf is a
situation filter expression, which, by referring to emergency situ-
ation properties, specifies the emergency situations to which ep is
applied.

An emergency policy ep upon satisfaction of the parametric
predicate exp grants to the subjects referred to by s the privilege
to send or receive messages on topics included in tf, in any emer-
gency situation denoted by stf of the emergency scenarios specified

by esf.

Example 10. Let us now consider the specification of an emer-
gency policy ep which grants external specialists access to phys-
iological data of patients in severe conditions, with the aim to
consent to timely treatments. Let us assume that ep grants ac-
cess to data of patients involved in emergency scenarios that
specify Pulmonarylssues as emergency development plan, and who
are currently under the emergency situation DyspneaOxygen. Pol-
icy ep can be specified as: (specialist, +/physiological/#, true, read,
edp="Pulmonarylssues”, {DyspneaOxygen}). Based on Example 9,
Mary and Bob are involved in the emergency scenarios es; and es,
which specify Pulmonarylssues as emergency development plan.

Therefore, according to ep a specialist can only access Bob’s/Mary’s
data when es;/es, specify DyspneaOxygen as current stage.

Finally, let us shortly consider the process that allows a secu-
rity administrator to specify emergency policies for a target MQTT
environment.

Based on Definition 6, emergency policy specifications can only
be achieved after having defined at least one emergency scenario.
In turn, at least one emergency development plan should be spec-
ified to define an emergency scenario. An emergency development
plan can be defined following a step-wise process that starts with
the identification of: i) a set of emergency situations depicting
possible stages of an emergency case, along with their associated
severity levels. Afterward, the security administrator needs to es-
tablish, for any considered emergency situation, if it can be entered
as first stage of the emergency case, or if it can only be reached
as a possible evolution of another emergency situation. Similarly,
he/she needs to decide if any of the considered situations can
evolve into the resolution of the emergency case. Any evolution is
enabled by the occurrence of events. In order to properly label all
considered evolutions, it is first required to identify the involved
events and model the related event types. Finally, the modeling of
the evolutions is completed with the possible specification of ac-
tions. Action specification relies on the previously mentioned mod-
eling of complex events types, as well as on simple transformation
rules that allow converting complex events into MQTT publishing
requests.

Once the definition of emergency development plans has been
completed, emergency scenarios are straightforwardly specified in-
dicating the set of subjects potentially involved in any considered
emergency case. Afterward, the security administrator can finally
focus on emergency policy specifications. Emergency policies are
specified as ordinary access control policies, but they make explicit
reference to the emergency situations where they apply.

6. System overview

Our proposed framework includes multiple enforcement mon-
itors, that are used to keep a reasonably low enforcement over-
head in scenarios where several clients are involved. They regulate
the exchange of messages by MQTT clients of a monitored envi-
ronment, on the basis of the specified ordinary and emergency ac-
cess control policies. A NoSQL datastore is employed to keep track
of metadata related to emergency management, and access con-
trol. More precisely, it stores: a) emergency scenarios along with
related current stages; b) primitive and complex event types; c)
ordinary and emergency policies; and d) subject, object, and en-
vironment attributes employed for policy specification. A module,
denoted CEP interface, is used to manage the evolution of emer-
gency scenarios, on the basis of interactions with the monitors and
a CEP engine. The possible detection of events by the CEP engine is
managed by handlers embedded in the CEP interface. Any time an
emergency scenario es is specified, two handlers are instantiated.
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Fig. 3. A high-level view of the system architecture.

The former is employed to manage the possible update of the re-
ferred current stage of es, whereas, the latter to catch CEP engine
notifications denoting that no update is required. Finally, the CEP
interface also embeds an MQTT publisher client responsible for is-
suing selected event notifications (formatted as MQTT messages)
to rightful subscriber clients.

A high-level view of the system architecture is shown in Fig. 3.

In order to present the role of each component of the pro-
posed framework, as well as the overall control flow, let us con-
sider a simple scenario where users u; and u, respectively admin-
ister MQTT clients ¢; and c,, which operate in an MQTT environ-
ment that hosts a broker b. A high-level representation of the sys-
tem’s control flow for the considered scenario is provided in Fig. 4,
where a UML Sequence diagram is used to depict the main interac-
tions that hold among the system’s stakeholders and components,
along with the executed tasks.

Let us assume that c¢; has been configured to publish messages
on topic t, whereas c, to subscribe the reception of messages re-
ferring to t. ¢; and c, have been set up to connect with broker b
by means of the enforcement monitors m; and mj, respectively.

In order to exchange messages, ¢; and c, need to connect with
the MQTT broker b. Let us shortly consider the connection pro-
cess of ¢c; mediated by m; (the same process allows the connec-
tion of c, mediated by m,). The process starts with a connection
request issued by c; on behalf of u;, denoted as cpey©1. On receipt
of cpcn©1, my: 1) opens a communication channel with b, and an-
other one with the CEP interface, to be used to convey any com-
munication related to c¢; requests, 2) analyzes subject attributes in
the intercepted packet header deriving the identity of the requester
subject, 3) forwards cpcy©q to b. The broker authenticates c¢; and
sends back an acknowledgment packet cpc4©; to my, which in turn
forwards it to c;.

Let us now assume that, once connected, c; sends a publish-
ing request cppg®q on behalf of u;. On receipt of cppg®q, my rec-
ognizes that cppg®; has been issued by a client, and redirects the
request to the CEP interface. More precisely, it prepares a com-
posite packet (i.e., cppg;), which includes the intercepted request
cppg‘1, and the objects s, o, and e, with fields corresponding to the
subject, object, and environment attributes associated with the re-
quest. It then issues the packet to the CEP interface and waits for a
response.

The CEP interface instantiates a control task responsible for the
analysis of cppg®;. This task first extracts from cppg®} the embedded
objects, and the original request cppg¢;, and identifies the request-
ing subject u; from the subject attributes. Afterward, it checks if
cppg€q matches the binding criteria of any specified primitive event
type in PET (cftr. Section 4). If no criterion is matched, the packet
cannot trigger any emergency evolution, thus the control task no-
tifies the monitor of the completion of the analysis. In contrast,
if cppg®q is referred to by at least one primitive event type, the
task handles the generation of primitive event notifications bound
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to cppg®q. For any primitive event type pet in PET (see Section 4)
which specifies binding criteria satisfied by cppg®;, the control task
derives an event notification enP®t. The generation employs internal
properties of cppgy and attributes extracted from cppg} referred to
in the initialization expression pet.adf (see Section 4 for more de-
tails). Let us denote with ENpe; the set of event notifications gener-
ated from cppg®}. The control task delivers ENpe; to the CEP engine,
and waits for the completion of the analysis of this set of prim-
itive event notifications. As soon as the control task is notified of
the analysis completion by the pair of handlers associated with any
emergency scenario the control task notifies the monitor that the
analysis has been completed. The monitor can thus continue the
processing of cppgq (see Section 7.2 for more details). Upon re-
ceiving the acknowledgment, the monitor selects from the NoSQL
datastore the emergency scenarios that refer to u; as an involved
subject. On the basis of the referred emergency situation of u; in
any of the active scenarios, monitor my selects from the datastore
all emergency policies that apply to uy’s request cppg‘;. In con-
trast, if there does not exist an active scenario among the selected
ones, m; selects from the datastore all ordinary policies applicable
to cppg®1. In both cases, m; then employs the enforcement mech-
anism proposed in Colombo and Ferrari (2018) (see Section 3.3),
authorizing the publishing if at least one of the selected policies
grants the access.

Let us now assume that the publishing of cppg®; has been au-
thorized by m;. The message is therefore issued by m; to the bro-
ker b, which, on the basis of the received subscriptions, forwards a
copy of this packet, referred to as cppg?, to c,. The packet is then
intercepted by m,, which monitors the communication channel be-
tween c, and b. Since the sender of cppg? is b, m, derives and en-
forces the applicable policies without the intervention of the CEP
interface. Once the identity of the receiver subject u, has been de-
rived, m, selects from the datastore the emergency scenarios that
refer to u, as an involved subject. In any of the selected scenarios
which are not referred to as inactive, the monitor derives the cur-
rent emergency situation of u,, and then selects from the datastore
all emergency policies that regulate the receiving of messages on
topic t (i.e., the topic of cppg?) by u, in any of the selected emer-
gency situations. In contrast, if no active scenario is detected, the
selection targets all ordinary policies applicable to cppg?. In both
cases, m, then proceeds to apply the enforcement approach pro-
posed in Colombo and Ferrari (2018).

7. Enforcement

Let us now focus in more details on selected aspects of the
proposed enforcement mechanism, instrumental to the selection
of the emergency policies applicable to an access request. Selected
policies are then enforced employing the mechanisms proposed in
Colombo and Ferrari (2018).

7.1. Event detection

A key functionality of our framework is its ability to handle the
evolution of emergency scenarios, on the basis of detected complex
events that trigger the entrance into specific emergency situations.
Since an event of complex type can only occur when specific prim-
itive events are observed, each corresponding to an MQTT client’s
publishing request, we now analyze core activities of the CEP inter-
face instrumental for event detection. These are executed any time
an MQTT client’s publishing request intercepted by an enforcement
monitor is forwarded to the CEP interface. More precisely, let us
start to consider the control task instantiated by the CEP interface
on receipt of a packet cppg* issued by an enforcement monitor. We
remind that cppg* includes a control packet cppg and three objects,
denoted s, o and e, with fields representing the subject, object, and
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Fig. 4. System control flow for the exemplified scenario.

environment attributes associated with the publishing request con-
text (see Section 6).

The control task starts managing the generation of primitive
event type notifications. This is achieved for all primitive event
types belonging to PET which are bound to cppg. A primitive event
type pet is selected iff the evaluation of the binding expression bcr
of pet is satisfied by cppg.

Any selected primitive event type spet is then used to gener-
ate event notifications, specifying objects characterized by: 1) a
time annotation, used for event ordering purposes, 2) a payload,
which represents the event content, and 3) a type, which refers
to the related event type name, implying that the structure of
the event payload has to match the one specified within compo-
nent adc of spet (see Section 3.2). The time annotation is straight-
forwardly derived as the timestamp related to the reception of
cppg*. The type corresponds to the value referred to by the com-
ponent pet of spet. Finally, the payload is specified by referring to
the content of component adf of spet. More precisely, the control
task initializes any attribute id referred to within component adf
of spet (cfr. Section 4) to the value of the corresponding expression
exp.

Example 11. Let us consider the control task ct created at time rt,
upon receipt of cppg*. Suppose that cppg* embeds: i) a publishing
request cppg on topic “physiological/respiratory”, with a payload that
includes field respiratory initialized to 27, and ii) subject, object
and environment attributes indicating that cppg has been issued
at time st by a device that monitors patient Bob’s conditions. Fi-
nally, let us also assume that PET includes the primitive event type
RespiratoryRate introduced in Example 6. Since the binding expres-
sion of RespiratoryRate is satisfied by cppg, this primitive event type
is selected for generating event notifications. The expressions in
component adf of RespiratoryRate are thus evaluated for deriving
the notification. As a consequence, the event notification Respirato-
ryRate@rt: {“bpm”:27, “time”:st, “patientID”:“Bob”} is generated.

Once the generation process has been completed, the control
task issues the primitive event notifications to the CEP engine, and
waits to be notified for the completion of the analysis of the deliv-
ered set of notifications. As soon as the pairs of handlers responsi-
ble for handling the evolution of any emergency scenario notify the
completion, the control task responds to cppg* with an acknowl-
edge message, terminating the execution.
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7.2. Emergency management

The CEP interface manages the evolution of any specified emer-
gency scenario es by means of two event handlers, denoted as
update-notifier and nochange-notifier (see Section 6). update-notifier
manages the detection of complex events and the possible update
of es’s current stage, whereas, nochange-notifier keeps track of CEP
engine analysis cycles during which no complex event is detected.
These handlers are instantiated by the CEP interface at es specifi-
cation time and then kept active as long as es belongs to the set of
managed emergency scenarios.

Each time the CEP engine completes the analysis of a deliv-
ered set of primitive event notifications one of these handlers is
invoked.

update-notifier is invoked when, on receipt of a set of primi-
tive event notifications, a complex event ce of type ecet is detected
by the CEP engine, which is referred to by an evolution ev of es.
The handler is notified of the detected event, as well as of the
set of primitive event notifications that have caused the event oc-
currence. The handler starts to select the current stage ems of the
emergency scenario es from the datastore, as well as the evolution
set of es. If es is not active, ems is initialized to L, whereas if es
is active, it is set to the current emergency situation of es. If there
exists an evolution ev whose components src and cet respectively
refer to ems and ecet, update-notifier specifies the emergency sit-
uation referred to within component trg of ev as the new current
emergency situation of es, propagating the update to the datastore.
Let us now denote with ct the control task that has delivered the
set of primitive event notifications which triggered the detection
of ce. Once the update has been performed, if ev specifies an ac-
tion ac, update-notifier gets from ct a copy of the composite packet
cppg* used for generating the notifications that caused the occur-
rence of ce. It then instantiates an execution manager task, which
asynchronously manages the execution of ac, following the process
detailed in Section 7.3, to which the derived copy is passed. Finally,
update-notifier issues the analysis completion notification to ct.

In contrast, the handler nochange-notifier is invoked if, upon re-
ceiving a set of primitive event notifications, the CEP engine does
not detect events of complex types referred to by an evolution of
es. The handler is notified of the analyzed set of primitive event
notifications, and, in turn, it notifies the analysis completion to the
control task which delivered these notifications.

Example 12. Let us assume that on receipt of the event noti-
fication Respiratory@rt presented in Example 11, the CEP engine
detects an event of type Breathlessness, which is referred to by
the evolutions of the emergency scenario es; (see Example 9), as
this specifies Pulmonarylssues as emergency development plan (see
Example 8). As a consequence, the handler update-notifier config-
ured for es; is notified of the detected event, as well as of the
primitive event notification Respiratory@rt that caused the detec-
tion. In contrast, the handler nochange-notifier is not invoked. Let
us now suppose that es; is not active. The handler initializes ems
to L, and then checks if an evolution exists, which refers to Breath-
lessness within component cet, and to 1| within component src. As
shown in Fig. 2, such evolution exists, and specifies Dyspnea as a
target emergency situation. As a consequence, update-notifier acti-
vates es; specifying the emergency situation Dyspnea as the new
current stage of the emergency scenario. Afterward, since the con-
sidered evolution does not refer to any action, update-notifier noti-
fies ct of the completion of the analysis.

7.3. Action execution

Let us now focus on the execution of actions associated with
emergency evolutions. We hereby present the process imple-

10
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mented by the execution manager task, which is responsible to
handle action executions. Execution manager is invoked any time
the current stage of an emergency scenario es is updated, and
component act (see Section 5) of the emergency evolution ev that
caused the update refers to an action.

Let us assume that the execution manager has been invoked to
handle the execution of a generic action ac. At start time, the ex-
ecution manager derives three event notifications from the copy
of cppg* received as input (see Section 7.2). The derived notifica-
tions refer to a predefined event type, respectively characterized
by fields corresponding to the subjects, objects and environment
attributes embedded in cppg*. The generated events’ notifications
are delivered to the CEP engine, whereupon the execution man-
ager stays on hold waiting for a CEP engine notification. If the
CEP engine notifies that no event has been detected, the execu-
tion manager immediately terminates. In contrast, on receipt of an
event ecet, execution manager generates a MQTT publishing request
cpps“EP on the basis of ecet content. The topic of cppgEP is initial-
ized to the result of the evaluation of the expression referred to
by component tp of ac (see Section 5). 9 Similarly, the payload of
cppEP is derived iterating over the initialization expressions re-
ferred to by component pl of ac, each targeting a different pay-
load’s attribute.

Finally, cppgEP is delivered to the broker of the monitored
MQTT environment by a MQTT publisher embedded in the CEP in-
terface (see Section 6) and connected to the MQTT broker at sys-
tem initialization time.

Example 13. Let us consider again the case introduced in
Example 12, now assuming that the evolution which in
Example 12 has caused the activation of es; refers to action
SevereBreathlessnessNotifier (see Example 7). After the current stage
of es; is updated, update-notifier instantiates an execution manager
task emt providing as input a copy of cppg* derived from ct, and
the action SevereBreathlessnessNotifier referred to by the evolution.
emt first derives a primitive event notification from a built-in
primitive event type that does not specify binding expressions, but
simply maps as payload fields the subject, object and environment
attributes in cppg*. Then, emt delivers the derived notifications to
the CEP engine. On receipt of these event notifications, the CEP
engine notifies the detection of an event SevereBreathlessnessce.
As a consequence, emt generates an MQTT publishing request
cpps P on topic critical/severebreathlessness, with a payload that
maps the one of the just detected events. Finally, the generated
packet is issued to the broker by the MQTT client administered by
the CEP interface.

8. Experimental evaluation

In this section, we first present the application of our frame-
work to the nursing home scenario introduced in Section 2, then
we evaluate the framework performance with a set of experiments
based on the same application scenario.

Our experiments rely on a prototype of the framework intro-
duced in Section 6. Our prototype includes an enforcement mon-
itor, defined as an extended version of the monitor presented
in Colombo and Ferrari (2018), which here has been redesigned
to enforce emergency policies. Metadata related to access control
and emergencies are managed by an instance of Redis,' a popular
in-memory key-value datastore. Event detection is carried out by
the CEP engine Esper!!, using the Event Processing Language (EPL)

9 We remind that tp is an initialization expression built referring to any attribute
in the payload of events of type cet.

10 https://redis.io.

1 https://www.espertech.com/esper.
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Table 3
Primitive event types specified for the case study.

pet adc ber adf description

Result {“pid”: string, t.TopicName. {“pid”:o0.patientID, Shows the results of a COVID-19
“result”: boolean, includes(“result”) “result”:t.Payload.result, test to which a patient has
“tDate”: date, “tDate”:t.Payload.testDate, undergone.
“reqld”: long, “reqld”:t.Payload.reqld,
“time”: long} “time”:e.time}

Prescription {“pid”: string, t.TopicName. {“pid”:o0.patientID, Shows the prescription of a
“tDate”: date, includes(“prescription”) “tDate”:t.Payload.testDate, COVID-19 test for a patient.
“reqld”: long, “reqld”:t.Payload.reqld,
“time”: long} “time”:e.time}

Location {“pid”: string, t.TopicName. {“pid”:o0.patientID, Shows the room where a patient
“pos”: string, includes(“location”) “pos”:t.Payload.location, is located at specified time
“time”: long} “time”:e.time}

Temperature {“pid”: string, t.TopicName. {“pid”:o0.patientID, Shows the body temperature of a
“temp”: float, includes(“temperature”) “temp”:t.Payload.temperature, patient at a specified time.
“time”: long} “time”:e.time }

RespiratoryRate {“pid”: string, t.TopicName. {“pid”:o0.patientID, Shows the respiratory rate of a
“bpm”: float, includes(“respiratory”) “bpm”:t.Payload.respiratory, patient at a specified time.
“time”: long} “time”:e.time}

EstimatedSp0O2 {“pid”: string, t.TopicName. {“pid”:0.patientID, Shows the peripheral oxygen
“Sp02”: float, includes(“saturation”) “Sp02”:t.Payload.saturation, saturation of a patient at a
“time”: long} “time”:e.time} specified time.

ReqAttSet {“cid”: string, 1 {“cid”: s.cid, Maps the set of subject, object
“uid”: string, “uid”: s.uid, and environments attributes
“gid”: string, “gid”: s.gid, which characterize access requests
“pSet”: Set(string), “pSet”: s.pSet, in the considered application

“relativeOf”: Set(string),
“pid”: string,
“ts”: long }

“relativeOf”: s.relativeOf, scenario.
“pid”: o.patientld,

“ts”: e.time}

for implementing queries able to detect events of complex types.
The CEP interface has been developed in Java, and allows man-
aging the evolution of emergency scenarios on the basis of MQTT
control packets forwarded by the enforcement monitor and events
detected by the CEP engine.

8.1. The case study

The considered MQTT-based IoT application scenario allows de-
tecting early symptoms of COVID-19 in nursing home patients, and
tracking their close contacts. Due to the high COVID-19 mortal-
ity in extended care units (European Centre for Disease Preven-
tion and Control, 2020), in such environments, COVID-19 diffu-
sion is contrasted through the preventive isolation of any identi-
fied possibly infected patient. The quarantine protocol, which is
normally applied to confirmed COVID-19 cases, is here extended
to any patient with early symptoms of COVID-19 who has not yet
undergone a test or is still waiting for a result, and to any patient
among his/her recent close contacts.

We assume that sensors worn by patients monitor physiological
data, such as patients’ temperature, respiratory rate, and periph-
eral oxygen saturation, whereas patients’ movements are tracked
through the interaction of patients’ bracelets with proximity sen-
sors deployed in any room of the nursing home. Additional ex-
changed data include the prescriptions of COVID-19 tests for nurs-
ing home patients, the related results, treatment options commu-
nicated to patients, and patients’ consent to proceed. We assume
that all devices and software modules that generate data are pro-
vided with an MQTT interface, and data are exchanged by means
of the MQTT protocol. Table 3 exemplifies a selection of primitive
event types specified for the above-mentioned data, each denoting
a class of primitive events derived from MQTT messages on given
topics exchanged in the nursing home environment. Column pet
specifies the identifier of the considered event type, adc declares
all fields that compose the payload of the represented event class,
ber defines the conditions to be met by an MQTT message for de-
riving an event of the represented class, and finally, adf specifies
the expressions that allow the initialization of payload fields.

1

Different groups of subjects are involved in the considered ap-
plication scenario. Physicians and nurses in the medical staff of the
nursing home access patients’ data and issue communications by
means of a mobile app. Similarly, external specialists use an app
to remotely check patients’ conditions and to communicate possi-
ble treatments. Patients can use an app to check their own health
status. The app can also be used by registered relatives of patients
subject to COVID-19 quarantine, to be updated on their kin condi-
tions.

We model the possible evolution of a COVID-19 case as an
emergency development plan characterized by the following emer-
gency situations:

« Suspected COVID-19, is an emergency situation with moderate
severity (level 2), related to a patient who has had COVID-19
symptoms in the last days;

Possible COVID-19 is an emergency situation with mild severity
(level 1) related to a patient who has been referred to as close
contact of a suspected or confirmed COVID-19 patient;
COVID-19 asymptomatic is an emergency situation with consid-
erable severity (level 3), related to a confirmed COVID-19 pa-
tient with no symptom;

COVID-19 symptomatic is an emergency situation with high
severity (level 4), related to a confirmed symptomatic COVID-
19 patient.

Severe COVID-19 is an emergency situation with critical sever-
ity (level 5), related to a symptomatic COVID-19 patient with
severe symptoms.

The possible evolution of a COVID-19 case is represented by
the state machine in Fig. 5, where emergency situations are rep-
resented as states, and evolutions as transitions.

Multiple emergency scenarios have then been defined (one sce-
nario per patient), which refer COVID-19 case as emergency devel-
opment plan, and a set of involved subjects that includes: a patient
p, the medical staff of the nursing home that takes care of p, the
external specialists who could be consulted, and the close relatives
authorized by p to receive information about his/her health condi-
tions.
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Fig. 5. State machine representing the possible evolution of a COVID-19 case.

A COVID-19 case scenario related to patient p can be activated
if p shows a COVID-19 symptom or p is referred to as close contact
of a suspected or confirmed COVID-19 patient. The former condi-
tion causes the entry into emergency situation Suspected COVID-
19, whereas the latter into Possible COVID-19. Both emergency sit-
uations imply the need to isolate p and to let p take a COVID-19
test. If the test is negative, either emergency situations are resolved
deactivating the emergency scenario, whereas, in case of a posi-
tive result with /without recent symptoms the emergency situation
COVID-19 symptomatic [COVID-19 asymptomatic is entered. The pas-
sage from COVID-19 symptomatic to COVID-19 asymptomatic is only
possible if, for some consecutive days, p does not show COVID-
19 symptoms, whereas the opposite transition occurs as soon as
a symptom is detected. If within COVID-19 symptomatic emergency
situation p shows clear signs of aggravation, the emergency evolves
into a Severe COVID-19 case. The backward transition is only possi-
ble if, for some consecutive days, no severe symptom is observed.
A COVID-19 case related to p is resolved in case of negative result
to a COVID-19 test.

The evolution of a COVID-19 case is triggered by the occurrence
of complex events. Table 4 exemplifies a selection of complex event
types for the considered scenario, leveraging on primitive events
reported in Table 3. Column cet specifies the name of the consid-
ered complex event type, adc specifies the set of fields compos-
ing the payload of the represented events, ets indicates the set of
event types referred to in the specification, whereas exp models
event specifications using the abstract event algebra introduced in
Section 3.2. Event types reported in Table 4 consider classes of
events denoting: the presence | absence of COVID-19 symptoms
with various severities, the activation of a COVID-19 case, the re-
sult of the last COVID-19 test to which a patient has undergone,
the rooms recently visited by a patient, and all contacts/close con-
tacts of a patient in the last days.

The analysis of physiological and proximity data allows deriv-
ing all patients who recently have had symptoms of COVID-19, as
well as those who have had close contact with a suspected or con-
firmed COVID-19 patient.

In order to promptly contrast COVID-19 diffusion, all suspected
cases and their close contacts have to be immediately reported to
the medical staff so that physicians could promptly isolate these
patients and prescribe a test, and they can be promptly informed
of their condition. This is obtained through the modeling of the
actions WarnActivation and NotifyCloseContact, shown in Table 5.
More precisely, at the early detected symptoms of COVID-19, War-
nActivation publishes an MQTT message to inform the suspected
COVID-19 patient and his/her attending physicians to be involved
in an active emergency scenario. The action converts events of type
Activation into MQTT messages, which, within the payload fields
pid and reqld, simply denote the identifier of the suspected COVID-

12

19 patient and the timestamp at which the case has been de-
tected. In contrast, NotifyCloseContact publishes an MQTT message
for any detected close contact of the patient who has just entered
the emergency situations Suspected COVID-19 and COVID-19 asymp-
tomatic. The action converts events of type CloseContact into MQTT
messages. The specification of CloseContact (cfr. Table 4) shows a
possible way to derive the close contacts of a patient p. For the
proposed calculation we assume that proximity sensors check the
presence of patients in any room of the nursing home at a rate
of one sampling per second, and these data are then published as
MQTT messages. The presence of a patient in a room is notified
by primitive events of type Location, which also report the room
(specified by field pos), date, and time of the observation. Through
the specification of complex event type VisitedRoom, we pick any
primitive event of type Location observed in the last 10 days, which
refers to the presence of p. In contrast, any complex event of type
Contact notifies that a pair of patients, which includes p, have been
in close contact for 1 s,'2 and reports all data related to the obser-
vation. A Contact event is derived from a primitive event of type
Location which notifies that, at the time specified by an event of
type VisitedRoom, another patient was in the same room. Finally,
complex events of type CloseContact are derived by counting all
events of type PossibleContact which refer to the same pair of pa-
tients and date. If the referred pair of patients have spent together
more than 15 min (900 s) in a day, they are notified as close con-
tacts.

Manifold privileges are granted to medical personnel operating
in the nursing home, as well as to patients. A selection of the cor-
responding ordinary policies is reported in Table 6. For any pol-
icy p, column s refers to the subjects who can benefit from the
privileges granted by p, tf shows the topic filter expression denot-
ing the topics of the protected messages, exp shows the parametric
predicate that specifies under which conditions p grants the access,
whereas pr shows the read [write privilege granted by p.

According to these policies, patients can receive, through their
mobile app, communications related to: i) test prescriptions and
results, ii) warning messages informing them to be suspected of
COVID-19 or to have been referred to as close contact of a COVID-
19 case, iii) medical bulletins, and iv) treatment options. Patients
can also use the app to give consent to undergo specific treat-
ments.

Additionally, any physician, through his/her mobile app, is al-
lowed to: i) monitor the physiological conditions of his/her pa-
tients, ii) prescribe a COVID-19 test for his/her patients and receive
the results, iii) receive notifications issued by the monitoring ap-
plication, reporting the activation of new COVID-19 cases, iv) illus-

12 This corresponds to the length of the interval between two consecutive sam-
plings by proximity sensors.
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Table 4
Complex event types specified for the case study.
cet adc ets exp
Symptom {“pid”: string} {Temperature, 71pia(0(MaxT>=38 v maxBpm>=25 v maxSp02<0.95))(
RespiratoryRate, T.pid g max(bpm) as maxBpm, max(temp) as maxT, max(Sp02) as maxSpOZ(
EstimatedSp0O2} oT.pid=R.pid A R.pid=S.pid(RespiratoryRateye as R A
Temperaturepe as T A EstimatedSpO2pe as S)
)

))Ega - 2 days

Shows any patient who has had COVID-19 symptoms in the last 2 days.

NoSymptom {“pid”: string} {Temperature, T1pig(0(MaxT<38 A maxBPM<25 A maxSp02>95)(
RespiratoryRate, (Rpid G max(bpm) as maxBpm, max(temp) as maxT, max(Sp02) as maxsp02(
EstimatedSp02} oT.pid=R.pid A R.pid=S.pid(RespiratoryRate,. as R A

Temperaturepe as T A EstimatedSpO2pe as S)
)
))233 - 2 days

Shows any patient who did not show COVID-19 symptoms in the last 2 days.

SevereSymptom {“pid”: string, {RespiratoryRate} 7T pid, bpm (O bpm >30(RespiratoryRatepe ))
“bpm”: float}

Shows any patient who has had severe breathlessness episodes in the last two days, along with the observed respiratory rate.

now
now - 2 days

NoSevereSymptom {“pid”: string} {RespiratoryRate} 77 pid (0 maxB <30(pidGmax(bpm) as max(RespiratoryRatepe )))how days

Shows any patient who did not show severe breathlessness episodes in the last two days.

Activation {“pid”: string, {ReqAttSet} T pid, ts as reqid(RequestAttributece )
“reqld”: long}
Denotes the need to isolate a patient and let him/her to undergo a COVID-19 test

UnderTest {“pid”: string} {LastTest, 7T pid
Activation, O pid=ppid A L.reqld=Preqld A LP.time>pime(
Prescription} Prescriptionc as P A-LastTeste.. as L A—Prescriptionc as LP)

VO L pid=apid A Areqld=L.reqld A LA.reqld>p reqia(
Activationee as A A—LastTestee as L A—Activatione as LA)

)

Shows any patient who is waiting for the results of a test or who is going to undergo a COVID-19 test.
LastTest {“Did": string, {RESUII} ”LR.pid, LR.testDate, R.reqld, R.result(

testDate: date, O (LR pid=R.pid)\(LR tDate—R tDate)(

reqld: long, pid g max(tDate) as testDate (Resmtpe)) as LR

result: boolean} A Resultpe as R

)
)
Specifies the results of the last COVID-19 test of a patient.
Positive {“pid”: string } {LastTest, T 1pid(O Lpid=Upid A Lresuie(—UnderTestce as U A LastTestce as L))
UnderTest}
Shows any patient whose last COVID-19 test is positive, for whom no new test has been reserved.
Negative {“pid”: string } {LastTest, 77 1pid(O Lpid=upid A~ Lresuit(—UnderTestce as U A LastTestee as L))
UnderTest}

Shows any patient whose last COVID-19 test is negative, for whom no new test has been reserved.
VisitedRoom {“pid": string, {Location- ”L.pid, pos, time, getDate(time) as date, ts(

“pos”: string, ReqAttSet} O Rpid=Lpid(Location as L A RegAttSetye as R)

“time”: datetime, o - 10 days

“date”: date,

“ts”: long}

Shows any room visited by a patient in the last 10 days, along with the time at which he/she was in the room.

Contact {“Did": string, {Location, nL.pid‘ V.pid AS rpid, V.pos, V.time, V.date, V.ts(
“rpid”: string, VisitedRoom, O (v.pos=Lpos)N(V.time=L.time)A(V.pidz£L.pid)A(V.pid=R.pid )A(y ts—r.ts)(
“pos”: string, ReqAttSet} Locationpe as L A VisitedRoomce as V A ReqAttSetpe as R
“time”: datetime, )
“date”: date, )
“ts”: long}
Shows any patient who has met patient rpid in the last 10 days, as well as the room and time at which the meeting occurred.
CloseContact {“pid": String- {Contact, ”C.pid, C.rpid, C.date, num_of_1sec_intervals as duration, Rts(
“rpid": string, REthtSEt} 0num,of,]sec,interva]s>900(
“date”™ datetime- C.pid, C.rpid, C.date, C.tsgcount(‘) as num_of_lsec_intervals(
“duration”: float, O (C.rpid=Rpid)A(C.ts=R.s)(CONtactce as P A ReqAttSetpe as R)
“ts”: long}
)
)

Shows any patient who, cumulatively, in a day, has stayed close to patient rpid for at least 15 min, along with the cumulative duration of these meetings, and the date
when they occurred.

13
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Table 5
Actions involved in the COVID-19 case study.
aid cet tp pl
NotifyCloseContact  CloseContact  closecontact  {“pid”: CloseContactc..pid}
WarnActivation Activation warning {“pid”: Activationce.pid, “time”: Activationc.reqld}
Table 6
Ordinary policies for the nursing home application.
s tf exp pr description
patient prescription o.patientld==s.uid r Allows patients to be informed of COVID-19 tests they must undergo.
patient result o.patientld==s.uid r Allows patients to get the results of COVID-19 test they underwent.
patient warning o.patientld==s.uid r Allows patients to be warned of having activated a COVID-19 case.
patient closecontact o.patientld==s.uid r Allows patients to be warned of being close contacts of suspected / confirmed COVID-19
cases.
patient treatment o.patientld==s.uid r Allows patients to be informed of treatment options.
patient consent o.patientld==s.uid w Allows a patient to consent to undergo a treatment.
medical_personnel physiological/# o.patientld e s.pSet r Allows physicians to access physiological data of their patients.
medical_personnel prescription o.patientld € s.pSet w Allows physicians to prescribe COVID-19 tests for their patients.
medical_personnel result o.patientld e s.pSet r Allows physicians to receive COVID-19 test results of their patients.
medical_personnel warning o.patientld e s.pSet r Allows physicians to be notified of patients’ COVID case activations.
medical_personnel treatment o.patientld e s.pSet w Allows physicians to communicate treatment options to their patients.
medical_personnel consent o.patientld e s.pSet r Allows physicians to collect the consent from their patients.
medical_personnel bulletin o.patientld e s.pSet w Allows physicians to publish medical bulletins for their patients.
medical_personnel closecontact o.patientld e s.pSet r Allows physicians to be warned of patients identified as close contact of a suspected /
confirmed COVID-19 case.
Table 7
Emergency policies for the COVID-19 case study.
s tf exp pr esf stf
medical_personnel location o.patientld e s.pSet r edp="COVID-19 case” All
Allows medical personnel to check the position of their patients.
external specialist physiological/# true r edp="COVID-19 case” {COVID-19 symptomatic,
Severe COVID-19}
Allows external specialists to access physiological data of overt COVID-19 patients.
relative bulletin o.patientld e s.relativeOf r edp="COVID-19 case” All
Allows relatives to receive the medical bulletin of their kin.
guardian treatment o.patientld € s.guardianOf r edp="COVID-19 case” {Severe COVID-19}
Allows the guardian of a patient in severe conditions to access treatment options.
guardian consent o.patientld e s.relativeOf w edp="COVID-19 case” {Severe COVID-19}

Allows the guardian of a patient in severe conditions to give the consent to made his/her kin undergo specific treatments

guardian result

Allows the guardian of a patient in severe conditions to access his/her test results.

o.patientld e s.guardianOf

r edp="COVID-19 case” {Severe COVID-19}

trate treatment options to any of his/her patient, and collect the
consent to proceed with the treatment, v) issue medical bulletins
to his/her patients, informing each of them about his/her condi-
tions, and vi) access notifications issued by the monitoring appli-
cation, denoting that one of his/her patients has had close contact
with a suspected or confirmed COVID-19 case.

Subjects involved in an emergency situation can benefit from
additional privileges. A selection of emergency policies for the con-
sidered application scenario is reported in Table 7. For any emer-
gency policy ep, column esf and stf specify expressions respectively
denoting the set of emergency scenarios and emergency situations
to which ep is applied, whereas columns s, tf, exp, and pr maintain
the same meaning as in Table 6.

Under any of the considered emergency situations, physicians
can access the position of their patients, as the efficient local-
ization of suspected or possible COVID-19 patients allows their
prompt isolation, and prevent infection diffusion. To identify effec-
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tive treatments for overt COVID-19 patients, or to identify patients
who could require hospitalization, external specialists are also au-
thorized to monitor physiological data of patients under the emer-
gency situations COVID-19 symptomatic and Severe COVID-19.

In order to better bridge the gap between patients under quar-
antine protocol and their families, relatives are made aware of the
conditions of their kin who cannot be visited during the quaran-
tine. The access to the medical bulletin of a patient under any of
the considered emergency situations is thus extended to a set of
preregistered patient’s relatives. Relatives can also play a funda-
mental role for patients in severe conditions, who, due to their
health status, are unable to understand or take actions, acting as
their guardians. Privileges granted to patients in ordinary situa-
tions are then applied to guardians of patients in critical condi-
tions. For instance, in a Severe COVID-19 emergency situation, a
guardian receives communication of the patient’s treatment op-
tions and consents to specific treatments on his/her behalf.
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8.2. Experiments

Let us now focus on the experiments we have carried out to
evaluate the efficiency of the proposed access control approach,
considering as a reference scenario the case study introduced in
Section 8.1.

For our performance evaluations we focus on the following
aspects: transmission time, which denotes the time a published
message takes for being received by a rightful subscriber, time
overhead, which quantifies the time requested by the enforce-
ment monitor to take a decision related to an access request, and
throughput, namely, the average number of MQTT control packets
per seconds which are analyzed by our framework.

Transmission time provides a first indication of the framework’s
usability, as it allows quantifying the overall communication la-
tency. However, it is a quite coarse-grained property, as it shows
the total duration of multiple communication phases. A client to
client (c2c) communication in an MQTT environment is articulated
into an initial client to broker (c2b) communication phase, during
which a publishing request is issued by a client to broker, followed
by a broker to client (b2c) phase, within which the broker forwards
a copy of the received message to any rightful subscriber. Each
packet issued by a client or forwarded by a broker is intercepted
by the enforcement monitor, which allows the transit only if ap-
plicable policies grant it. Therefore, to assess the impact of policy
enforcement on the overall transmission time, for any c2c commu-
nication, we keep track of the time overhead introduced by the en-
forcement monitor during the phases c2b and b2c, and, compre-
hensively, during the whole c2c communication. Similarly, through-
put is calculated with reference to the communication phases c2b,
b2c, and c2c.

The assessment of our framework performance refers to a target
setup of the monitoring application, which aims at supporting a
realistic deployment tailored for a nursing home of big size. Our
empirical evaluation is then complemented with a further setup,
introduced to show the framework behavior in an extreme case
configuration of the monitoring application.

Target setup considers a subject set of 300 patients, 60 health-
care workers among nurses and physicians, 60 relatives, and 6 spe-
cialists. In contrast, in the extreme case setup, any subject group’s
numerousness is multiplied by 5.

Subjects communication in both setups is regulated by a policy
set that includes the ordinary and emergency policies presented in
Section 8.1, and a few additional ones introduced to grant to all
nursing home devices the privilege to publish sensed data.

Our experiments refer to a deployment that includes 3 enforce-
ment monitors, each managing the connections of one-third of the
subjects of each subject group. Time overhead, transmission time,
and throughput are calculated at each enforcement monitor inter-
face with the nursing home’s MQTT environment. For our experi-
ments, MQTT clients have been configured in such a way that, in
the whole MQTT environment, on average, 60 publishing requests
per second are generated, and the analyzed scenario refers to a
period of 30 days of simulated executions of the monitoring appli-
cation.

A detailed view of the computed performance measures is pre-
sented in Table 8, whereas Fig. 6 shows, at aggregate level, their
trend in the considered setups. In the target setup, on average, a
transmission time of ~43 ms has been observed, of which, almost
~31 ms is due to the enforcement overhead. Overall, in this setup,
our framework analyzes ~96 control packets per second. In con-
trast, the transmission time grows up to ~71 ms in the extreme
case setup, with an average time overhead of ~69 ms, and a to-
tal throughput which decreases to ~88 cp/s. As visible in Fig. 6, in
each setup, the 3 enforcement monitors almost introduce the same
time overhead, show similar transmission times, and comparable
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packet processing rates. For each monitor, time overhead related
to phase ¢2b (shown in red) is significantly higher than in phase
b2c (in blue), whereas, even though with a less marked difference,
the opposite trend is observed with the throughput related to the
¢2b and b2c phases (respectively shown in yellow and green). This
behavior is justified by the enforcement monitor activities in each
communication phase. Indeed, in the c2b phase, on receipt of a
control packet, in order to select and enforce the applicable poli-
cies, the enforcement monitor has to interact with the CEP system
to check whether the intercepted packet causes the evolution of
any emergency scenario, whereas, in the b2c phase no interaction
with the CEP system is required. It is worth noting that the above-
mentioned differences are more accentuated in the extreme case
setup, since, due to a higher number of patients to be monitored,
the number of instances of COVID-19 case scenarios to be managed
by the CEP interface is significantly higher.

Overall, our experiments have shown satisfactory results in both
setups. The observed enforcement overhead is reasonably low even
in the extreme case, where the size of the monitored environment
is not negligible.

8.3. Results and discussion

The case study and related experimental evaluation have shown
the feasibility of our approach, timely emergency identification,
and reasonably efficient policy enforcement. However, the experi-
ence has also highlighted a few framework limitations that we dis-
cuss in the remainder of this section, along with possible strategies
to handle them.

Preparedness The first shortcoming is the lack of services that
could favor timely planning of countermeasures to potential ag-
gravations of an emergency. The proposed approach has been de-
signed considering the correctness of the enforcement mechanism
as the primary requirement. Although our experimental evalua-
tion has shown the ability of the system to operate with almost
real-time data, the proposed emergency management mechanism
has an inherently reactive nature. Indeed, emergency situations
are faced only when these have occurred. To enhance subjects’
preparedness for possible emergency worsening, our framework
can be complemented with additional modules, that analyze the
messages exchanged in a target environment to predict the pos-
sible evolutions of an emergency scenario before the CEP system
observes them. Although not exploitable for access control pur-
poses,'? this strategy could make emergency management proac-
tive, favoring the organization and enactment of timely counter-
measures. For instance, referring to the COVID-19 case scenario
(see Section 8.1), let us consider the case of a patient involved
in the emergency situation COVID-19 symptomatic. Based on the
emergency development plan represented in Fig. 5, such an emer-
gency situation can evolve into Severe COVID-19 if specific symp-
toms occur. According to the specification of the complex event
SevereSymptom proposed in Table 4, such an evolution is triggered
by severe breathlessness episodes, during which the respiratory
rate goes over the threshold of 30 breaths per minute. Patients
with severe symptoms could require particular treatments, such
as supplemental oxygen, or it could even be necessary to move
them to a hospital for more intensive care. However, it may hap-
pen that these measures could not be immediately applicable. For
instance, transfers could be constrained by the availability of an
ambulance, whereas oxygen administration by a limited stock of

13 Access control decisions depend on the policies applicable to access requests,
which in turn depend on the current stage of the emergency scenarios where the
requesting subjects are involved. The evolution of emergency scenarios cannot rely
on predictions. It has to depend on occurring events to ensure the correctness and
completeness of granted authorizations.
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Table 8
Observed performance measures.
Phase  Monitor 1 Monitor 2 Monitor 3 Avg Tot
Target setup Time c2b 25.25 ms 25.74 ms 25.35 ms 25.45 ms -
overhead b2c 5.1 ms 5.17 ms 5.15 ms 5.14 ms -
c2c 30.36 ms 30.91 ms 30.50 ms 30.59 ms -
Transmission time  c2c 40.48 ms 44.49 ms 44.09 ms 43.02 ms -
Throughput c2b 14.75 cp/s 14.69 cp/s 14.72 cp/s 14.72 cp/s  44.16 cp/s
b2c 17.28 cp/s 17.26 cp/s 1729 cp/s 17.28 cp/s  51.83 cp/s
c2c 32.03 cp/s 3194 cp/s 32.01 cp/s 32.00 cp/s 95.99 cp/s
Extreme case setup  Time c2b 62.15 ms 62.24 ms 64.03 ms 62.80 ms -
overhead b2c 5.83 ms 5.73 ms 6.16 ms 5.91 ms -
c2c 67.98 ms 67.97 ms 70.19 ms 68.71 ms -
Transmission time  c2c 70.86 ms 70.77 ms 72.27 ms 71.3 ms -
Throughput c2b 1393 cp/s 13.85cp/s 13.85cp/s 13.87 cp/s  41.63 cp/s
b2c 15.50 cp/s 1546 cp/s 1548 cp/s  15.48 cp/s  46.44 cp/s
c2¢c 29.43 cp/s 2931 cp/s 2933 cp/s 2936 cp/s 88.07 cp/s
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Fig. 6. Performance analysis results.

cylinders in the nursing home. Therefore, a service capable of pre-
dicting a worsening and informing the medical personnel could
help to shorten these delays, favoring more timely treatments.
Machine learning (ML) |/ Deep Learning (DP) and CEP-based
solutions are typically employed as alternative approaches to the
analysis of data streams in IoT applications. Nonetheless, a few in-
tegrated solutions have been proposed to enable predictive ana-
lytics in CEP systems (e.g., see Akbar et al., 2017). Following the
same idea, we believe our CEP system could benefit from ML/DP
services able to predict the occurrence of complex events. How-
ever, the integration is far from being straightforward, as several
challenging issues should be addressed, which we briefly discuss
in what follows. Although some prediction algorithms have already
been proposed for the same purpose (e.g., see Akbar et al., 2017),
a thorough analysis and experimental evaluation are required to
evaluate their applicability in our scenario, identifying the best al-
gorithms to employ. Even hypothesizing the availability of an ML
algorithm that fits our scenario, one should also consider further
issues, namely: i) how ML/DP modules could be interfaced with
the existing system, and ii) once predictions are derived, how they
can be used, exploiting the native framework’s communication and
access control features. The former issue requires defining an effi-
cient data analysis pipeline for MQTT messages to support real-
time analytics. A promising approach to be considered for possible
adoption in our framework requires bridging MQTT environments
to Kafka'¥ ecosystems (e.g., see Hugo et al.,, 2020; Stufi. and Bacl¢.,
2022). Data streams can then be analyzed by exploiting the Kafka
Stream API (Seymour, 2021) and third-party libraries for ML | DP,
such as, for instance, Tensor Flow."”. This technology has been al-

14 https://kafka.apache.org Shapira et al. (2021).
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ready used in several use cases. For instance, Audi uses it in the
back-end of a connected vehicle infrastructure to perform real-time
traffic recommendations and prediction maintenance.'®

As far as prediction usage is concerned, sinks could be neces-
sary to collect predicted events, which could then be converted
into MQTT messages and issued to authorized subjects. An ap-
proach similar to the one we adopt for the actions referred to by
emergency evolutions (see Section 7.3) could be used for this pur-
pose. More precisely, a new type of action can be defined and ex-
ecuted during the whole permanence into an emergency scenario
stage, which converts predicted events into MQTT messages and
delivers them to the rightful subjects.

Concurrency control and scalability Although our experiments
have shown reasonably good results in both the considered setups,
the observed growth of the transmission time in the extreme case
setups could suggest the need for techniques to make the approach
efficient even in very large-scale scenarios.

A possible reason for the observed behavior is the centralized
approach that handles the evolution of emergency scenarios, which
has been designed to be executed on a single CEP Interface.

A key role is played in our system by the handlers update-
notifier and no-change-notifier, which are responsible for manag-
ing the evolution of an emergency scenario es. In our prototype, a
unique component carries out both handlers. This component im-
plements a single-threaded event loop model, employing a pool
of internal threads for the interaction with an instance of Redis,
which keeps track of metadata related to emergencies and access

15 https://www.tensorflow.org.
16 https://www.confluent.io/kafka- summit-london18/keynote-fast-cars-in-a-
streaming-world-reimagining- transportation-at-audi.
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control. The incoming complex events generated by the CEP en-
gine are added to an event queue. These events can either refer
to a complex event type referred to by the evolutions of es, or a
special one, hereafter denoted with no-cet, which denotes that the
CEP engine does not detect any compatible event.

For any event ce that is picked up from this queue, if ce’s type is
no-cet, it cannot trigger the evolution of es. Therefore, ce’s analysis
is immediately terminated. Otherwise, a dedicated thread from the
pool is selected, which selects the current stage of the emergency
scenario from the Redis keyspace, and checks if ce causes the evo-
lution of es. In such a case, this thread updates the scenario’s cur-
rent stage in the Redis keyspace. Our prototype has been designed
in such a way that, at most, one internal thread is active at a time
and can update the current stage of es. The events are analyzed
in the same order the CEP engine has generated them, and thus,
es evolves following their chronological detection order. Therefore,
it has the benefit of avoiding possible conflicts which could arise
with distributed implementations; however, as mentioned before,
the presence of a single CEP Interface could be a system bottleneck
for large-scale scenarios. Different solutions could be employed to
address this issue. A straightforward one could require substituting
the centralized CEP Interface with multiple instances of this com-
ponent, each devoted to interacting with a different enforcement
monitor. This change would allow splitting the emergency manage-
ment workload into multiple parallel ones, requiring the manage-
ment of concurrent updates to the scenario’s current stage in the
Redis keyspace. Despite conflicts can be avoided by specifying read
and write accesses to the Redis keyspace within transactions,!” the
updating order cannot be guaranteed to comply with the event de-
tection order. Although this problem could be addressed by config-
uring the system so that each emergency scenario is entirely han-
dled by only one CEP interface, this strategy is unsuited for appli-
cations characterized by a single emergency scenario of big size.

A totally different solution to the issues mentioned above could
be an approach allowing the integrated management of event de-
tection and emergency evolution by a unique data management
system. Recent data stream processing systems (DSPS), such as
Apache Flink,'® allow sharing state information among events. A
few state-of-the-art systems (e.g., Botan et al., 2012; Wang et al.,
2011; Zhang et al., 2020), allow supporting concurrent state access
during stream processing with transactional semantics. The access
to application states by multiple executors is achieved using state
transactions,'® whose execution is scheduled in such a way to re-
spect the chronological order of their trigger events. It is expected
that our framework could benefit from integrating a similar sys-
tem. Indeed, in such a case, our CEP Interface could be relieved
from the necessity to handle emergencies’ evolutions, as this task
would be in charge of the adopted DSPS. However, several issues
should be addressed before this integration could be possible.

The first issue is related to modeling aspects. We believe emer-
gency evolutions can be implemented as state transactions execut-
ing concurrent accesses to the current stage of an emergency sce-
nario, which, along with all other emergency management meta-
data, represents a shared state. We also think the events that
trigger these state transactions cannot refer to the same complex
event type as those that trigger the implemented evolutions. In-
deed, in our application scenario, a transaction implementing an
evolution ev could only be executed if ev refers to the current stage
of the emergency scenario within its source component ev.src. This
additional precondition is not caught by the events of type ev.cet,

17 Redis employs an optimistic concurrency control, where the check-and-set
mechanism is used to control transaction executions.

18 Apache Flink, https://flink.apache.org]/.

19 A state transaction is a set of state accesses triggered by the processing of one
input event at one operator (Zhang et al., 2020).
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as in our framework complex event types do not specify the emer-
gency situations where related events can occur, and thus, event
occurrence does not depend on the scenario’s current stage. As a
consequence, it is necessary to determine if a new class of event
types is required to trigger transactions’ execution.

Another issue is related to the management of actions possi-
bly specified by the evolutions. Based on the previous reasoning,
evolutions could be implemented as state transactions. Therefore,
how actions can be executed when transactions are scheduled for
execution should be defined.

Finally, a further significant issue is how policy retrieval can be
achieved. To select the access control policies applicable to access
requests, the enforcement monitor has to be aware of the current
stage of the emergency scenarios where requesting subjects are
involved. In the current prototype, based on the fact that emer-
gency metadata and access control policies are both managed by
the same instance of Redis, we have used a Redis transaction to
achieve this selection. This transaction retrieves the current stage
of the emergency scenarios where the subject is involved and de-
rives the applicable policies for the resulting selection. A similar
approach could also be used if a stateful DSPS which employs con-
current state access was employed. However, to define how this
selection can be achieved, one should first evaluate if emergency
and access control metadata can both be represented as states or
how Redis could be jointly used with the DSPS for this selection.

Our early analysis has revealed that the DSPS presented in
Zhang et al. (2020), denoted TStorm, distinguishes from the other
proposals for efficient state transaction scheduling and processing
mechanisms designed to exploit parallelism opportunities offered
by multi-core architectures. Therefore, assuming that previously
mentioned issues could be addressed, the integration of TStorm
within our system could magnify scalability and efficiency bene-
fits.

9. Related work

The great majority of approaches to handle access control dur-
ing emergencies employ the break the glass (BtG) paradigm, ac-
cording to which, during an emergency, a user requests and gains
access to resources that in normal situations would not be permit-
ted.

A seminal work by Brucker and Petritsch (2009) proposed an
approach to integrate BtG policies into access control models. The
proposed mechanism relies on emergency levels, namely BtG poli-
cies that extend the privileges granted by regular policies, allow-
ing fine-grained control over protected resources. Enabling policies
are employed to allow subjects to activate BtG policy at run-time.
In case of break the glass requests during an emergency, the ac-
cess decision is derived from the applicable active BtG policies.
The same authors in Brucker et al. (2010) investigated the inte-
gration of BtG mechanisms with Attribute-based Encryption (ABE),
which is a technique that uses public-key cryptography to en-
force fine-grained access control based on user attributes. The ap-
proach proposed in Brucker et al. (2010) is based on a hierarchy
of emergency attributes employed to encrypt and decrypt data re-
sources. Emergency attributes denote emergency severity levels ac-
tivated/inactivated by a central authority and are used to encode
BtG policies. A BtG access is only possible when the emergency
attribute required for decryption is active and the same attribute
was active at encryption time.

The approaches by Brucker and Petritsch (2009);
Brucker et al. (2010) and Rajput et al. (2021) have not been
designed for IoT applications, which in contrast have been
targeted by several more recent proposals. For instance,
Yang et al. (2018) propose a password-based break-glass access
control mechanism for IoT ecosystems. In Yang et al. (2019) the
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same approach has been used to protect the access to patients’
medical files in a cloud-enabled IoT healthcare ecosystem.

Aski et al. (2021) proposed an access control mechanism based
on BtG and ABE to regulate the access to healthcare data within a
cloud-enabled IoT medical ecosystem during emergency situations.
The proposed approach employs pre-shared passwords to extract
BtG keys, however, implementation details of the proposed model
are not discussed.

de Oliveira et al. (2020) proposed a cloud-enabled framework
where a BtG mechanism is used to grant medical personnel access
to encrypted medical data managed by a cloud-based application
during emergency situations.

Belguith et al. (2018), proposed a BtG access control approach
that leverages on: i) Shamir’s secret sharing scheme, to derive se-
cret shares from a secret access key, ii) ABE, used to encrypt the
secret shares, and iii) QR encoding of the encrypted shares. In or-
der to execute a BtG access users have to scan QR codes and re-
cover individual keys with their attributes.

Van Bael et al. (2020) proposed a context-aware BtG ac-
cess control framework for IoT environments. A key feature of
Van Bael et al. (2020) is the ability to predict emergencies from
contextual information generated by IoT sensors. On the prediction
of an emergency, users are notified of the predicted situation, and
contextually, the related break-glass policies are activated. The sys-
tem then waits for possible break-glass requests.

Marinovic et al. (2014), proposed a BtG model that employs a
logic programming language to reason about unknown and con-
flicting information in policy decisions, and a policy specification
language that allows security administrators to rule break-glass ac-
cesses.

Several BtG extensions have also been proposed for RBAC (e.g.,
Ferreira et al., 2009; Maw et al., 2014; Maw et al., 2016; Nazerian
et al,, 2019).

Our approach and BtG based approaches have significant dif-
ferences. In our framework subjects do not need to explicitly ask
for exceptional access permissions, since they gain access privi-
leges granted by emergency policies as soon as emergency situ-
ations are detected, favoring a more efficient control of the pro-
tected data. In addition, none of the above-mentioned proposals
were designed to work with MQTT based IoT ecosystems, and ex-
cept for Van Bael et al. (2020), none provide an emergency detec-
tion mechanism.

Padmashree et al. (2021) proposed an access control framework
that employs Elliptic Curve Cryptography to enforce secure access
to patient data over Healthcare IoT in both normal and emergency
situations. The main contribution of Padmashree et al. (2021) is
a lightweight cryptographic enforcement mechanism that can be
used during emergencies. However, no support for emergency de-
tection is provided, nor for the specification and management of
emergency evolutions.

We are only aware of a few more approaches to emergency de-
tection and data sharing regulation in emergency situations (i.e.,
Carminati et al.,, 2013; Dallel et al., 2021; Kabbani et al., 2014).
More precisely, Kabbani et al. (2014) proposed an approach to en-
force ABAC policies in ordinary and emergency situations. Like our
model, ordinary and emergency situations are detected by employ-
ing a CEP-based approach. However, different from our work, no
systematic approach to gathering events from event sources and
binding events to ordinary and emergency situations are discussed,
and no performance evaluation is proposed.

Carminati et al. (2013) proposed a framework to en-
force controlled information sharing under emergency situa-
tions, which employs a CEP system for emergency detection.
In Carminati et al. (2013), emergency policies regulate the gen-
eration of temporary access control policies that override ordi-
nary privileges in emergency situations. Once an emergency is de-
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tected, the applicable temporary access control policies are gen-
erated, stored in local repositories, and kept active until either
another emergency is detected or the current emergency is over.
In contrast, our approach does not require generating and man-
aging temporary policies. Once an emergency situation is de-
tected, the applicable emergency policies are selected to grant
to the involved subjects the exceptional privileges permitted in
the considered situation. In addition, different from our work, in
Carminati et al. (2013) no management support is given to the pos-
sible development of an emergency situation into an articulated
emergency scenario.

Lastly, Dallel et al. (2021) proposed an XACML-based access
control framework to manage emergencies within IoT smart build-
ings. In Dallel et al. (2021), a smart building includes several types
of emergency detection sensors (e.g., smoke detectors) which em-
ploy an MQTT-based communication interface. A key feature of
Dallel et al. (2021) is an emergency communication center (ECC),
which alerts rescue agencies (e.g., the fire department) of the
emergency notifications issued by the above-mentioned sensors. In
addition, to favor a prompt intervention, the ECC delegates rescue
teams access to relevant data such as damaged areas, safe exits,
and evacuees’ locations. Data sharing is controlled by delegation
policies, embedded in capabilities tokens, and enforced by an ad-
hoc designed module denoted delegation decision point. Despite
both our framework and Dallel et al. (2021) target MQTT-based IoT
ecosystems, these works have significant differences. In particular,
in Dallel et al. (2021), no support is given for the modeling and
management of emergency evolutions. In addition, it is not clear
how ordinary access control is restored once an emergency is over.

10. Conclusions

In this paper, we have proposed an access control system to
enforce controlled data sharing within MQTT-based IoT ecosystems
during emergency and ordinary situations. The system analyzes the
MQTT messages exchanged in a monitored ecosystem leveraging
on Complex Event Processing for emergency detection. Emergency
and ordinary ABAC policies are employed to regulate data sharing
in emergency and ordinary situations respectively.

We have assessed the feasibility of the proposed approach with
a case study related to a healthcare application that monitors nurs-
ing home patients during the COVID-19 pandemic. Early exper-
imental performance evaluations show promising results and a
quite acceptable policy enforcement overhead. We plan to enhance
this preliminary assessment by testing the approach in further ap-
plication scenarios.

In spite of this positive feedback, the experience has also al-
lowed the identification of framework limitations, related to emer-
gency preparedness, and efficiency when growing the scale of ap-
plication scenarios. Although we have started reasoning on poten-
tial addressing strategies (see Section 8.3), we plan to further ex-
plore them in future work.

Preparedness can be favored by services that predict emergency
aggravations. Indeed, such a functionality allows the preventive
planning of countermeasures and thus shortens the reaction time
to emergency occurrences. However, the implementation of these
services requires addressing some methodological and technologi-
cal issues that we have discussed in Section 8.3.

On the other hand, different approaches could favor a higher
framework efficiency in large-scale scenarios. In particular, we have
considered the use of multiple CEP interfaces, and the possible
substitution of the CEP engine with a DSPS able to support con-
current state accesses. The latter option appears quite promising,
even due to systems able to exploit the parallelism opportunities
offered by modern multi-core architectures. However, at the same
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time, it is constrained by issues related to the modeling and man-
agement of state transactions (see Section 8.3).

An additional strategy to optimize our framework could be the
use of multi-query optimization techniques for CEP systems (e.g.,
see Zhang et al., 2017). These approaches aim at reducing redun-
dant computation among pattern queries that work on the same
data streams. We plan to design similar techniques for our frame-
work as future work. Lastly, we are also planning to develop a tool
that helps security administrators to perform administrative oper-
ations related to ordinary and emergency situations, and a moni-
toring tool to evaluate the effects of the specified policies.
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Appendix A. Correctness

In this appendix, we discuss the key properties of the proposed
framework, which are instrumental in correctly (i) managing the
evolution of emergency scenarios and (ii) selecting emergency and
ordinary policies applicable to an access request. The correctness of
policy enforcement leverages on these properties, which represent
the core contribution of the current paper. In contrast, we do not
cover here the correctness of the enforcement mechanism, since
these proofs would be heavily based on the message-altering ap-
proach presented in Colombo and Ferrari (2018), which here has
only been used as a black-box external service.

In summary, the properties we cover in this section are the fol-
lowing:

1. the enforcement monitor intercepts any MQTT control packet
exchanged in the monitored environment, and forwards any in-
tercepted client’s publishing request to the CEP interface;

2. any primitive event notification generated by the CEP interface
on receipt of an intercepted publishing request refers to a com-
plex event type that is bound to that packet;

3. any specified complex event type is referred to by at least one
primitive event of the generated set;

4. the CEP engine detects any complex event of the specified types
which occurs in the monitored environment, notifying it to the
CEP interface;
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5. the CEP engine correctly updates the current stage of the emer-
gency scenarios based on the complex events notified by the
CEP engine;

6. the enforcement monitor correctly selects the policies applica-
ble to an access request issued by a subject based on the cur-
rent stage of the emergency scenarios where that subject is in-
volved.

Let us consider an application scenario where it is required to
regulate data sharing in an MQTT environment tenv, in the pres-
ence of an emergency scenario Es that involves a set S of subjects.
Let Ps be the set of ordinary and emergency policies specified for
Es, and let PET and CET be the set of primitive and complex event
types specified for the considered scenario.

Let C be the set of MQTT clients of tenv, let b be the message
broker of tenv, and let us assume a framework deployment that
includes an enforcement monitor m, a NoSQL datastore that keeps
track of metadata related to emergency management and access
control, and a CEP interface which manages the evolution of Es re-
lying on the detection abilities of a CEP engine.

We assume that all clients of tenv are configured to connect
with m rather than directly with b.

Statement 1 (System interface). Any control packet issued by an
MQTT client ¢; or the MQTT broker b of tenv is intercepted by m.

Discussion. Based on the above-mentioned assumptions, any
client c; is configured to connect with m rather than directly with
b, and m to connect with b on behalf of c;. Since control pack-
ets can only be delivered through the established connections, all
packets issued by c;, or b, are intercepted by m.

To reason on the behavior of the adopted CEP system, we rely
on some obvious assumptions: i) all primitive event notifications
observed by the CEP engine are generated by the CEP interface, ii)
the CEP engine observes all primitive event notifications generated
by the CEP interface, and iii) all complex event notifications gener-
ated by the CEP engine are received by the CEP interface.

Let cppg be a client publishing a request intercepted by m and
notified to the CEP interface within a packet cppg* along with the
subject, object, and environment attributes associated with the re-
lated access request context. Let us denote with PEN; the set of
primitive event notifications generated by the CEP interface on re-
ceipt of cppg* at time t. In addition, let isBound(et,p) be a boolean
function that receives as input a primitive event type et and a pub-
lishing request p and evaluates true iff p is bound to et, namely if
the binding criteria referred to by et are satisfied for p.

Statement 2 (Compliancy of primitive event generation). For any
primitive event notification pen € PENy, cppg is bound to the prim-
itive event type pet € PET referred to as type of pen.

Discussion. As discussed in Section 7.1, the control task that is
instantiated by the CEP interface on receipt of cppg* at time t iter-
ates over the set of primitive event types PET to select those usable
for primitive event generation. A primitive event type pt of PET is
selected iff isBound(pt, cppg) returns true. Any selected primitive
event type pt is then employed to derive a primitive event notifi-
cation pe which refers to pt as type. The union of the generated
notifications composes PEN;. Therefore, since pen € PEN;, and PEN;
has been derived from cppg, then pen has been generated starting
from a complex event type pet that is bound to cppg, which is also
referred to as the type of pen.

Statement 3 (Completeness of primitive event generation). For any
primitive event type pet € PET such that cppg is bound to pet,
there exists a primitive event notification pen € PEN;, which refers
to pet as type.
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Discussion. By construction, the control task instantiated by the
CEP interface on receipt of cppg* generates a primitive event no-
tification pen for any primitive event type pet of PET such that
isBound(pet, cppg) is true, which specifies pet as type. As a con-
sequence, there cannot exist a primitive event type pet’ € PET such
that isBound(pet’, cppg)=true, which is not referred to as type by a
primitive event notification pen € PEN.

Statement 4 (Correctness of complex event generation). Any com-
plex event of type cet € CET which occurs in the monitored en-
vironment tenv is detected by the CEP engine and notified to the
CEP interface.

Discussion. Correctness of complex event generation entirely
rely on the detection abilities of the CEP engine, and we assume
the CEP engine’s ability to correctly catch events of any specified
complex event type cet € CET, notifying all detected events to the
CEP interface.

Let us now focus on the ability to correctly manage the evolu-
tion of emergency scenarios. At Es specification time, the CEP inter-
face instantiates the event handlers update-notifier and nochange-
notifier, which subscribe to the notification of events generated by
the CEP engine and manage the evolution of the emergency sce-
nario (see Section 7.2). In particular, update-notifier is notified of
the detection of any complex event ce that refers as type the same
complex event type referred to by at least one evolution of the Es’
emergency development plan.

Let Edp be the emergency development plan of Es, and let Ev be
the set of emergency evolutions referred to by Edp (see Section 5).

Let us denote with ems the current stage of Es, and let v be the
last value to which ems has been set at time t, where t refers to
the time annotation of the complex event type that has caused the
update. Let CE{¥ be the set of complex events notified by the CEP
engine to update-notifier since the last update of ems to v at time
t. A strict total order is defined on CE;Y, based on the time anno-
tation referred to by the collected events, and thus, complex event
notifications are processed in the same order as they have been
generated by the CEP engine. In addition, let us refer to the time
annotation and type associated with a complex event notification
ce € CE{V with notation ce.ts and ce.type, respectively.

To reason about the possible evolution of the current stage of
Es, let us refer to any evolution ev in Ev which refers to v within
component src as evolution based on v, and let us denote with trig-
ger of v evolution any event ce € CE;V such that there exists an
evolution ev based on v which refers to ce.type as complex event
type (i.e., ce.type = ev.cet).

Statement 5 (Correctness of emergency scenario evolution). On re-
ceipt of an event event ce that is a trigger of v evolution, the value
referred to by ems is updated from v to v’ iff 3 ev € Ev that is an
evolution based on v, such that ev.trg=v’ A ev.cet=ce.type A A ce’
e CEt"Y that is a trigger of v evolution, such that t<ce’.ts<ce.ts.

Discussion. By construction, update-notifier is the only process
that can update ems. In addition, by construction, on receipt of
ce, update-notifier looks for an evolution ev based on v in Ev
which refers to ce.type as complex event type. Based on the well-
formedness rules of emergency development plans (see Section 5),
any pair of evolutions that refer to the same value within com-
ponent src, have to specify events of different types within com-
ponent cet. As a consequence, if such an evolution ev based on v
exists, it is unique within Ev, and thus, denoting the value of ev.trg
with v', update-notifier updates the current stage of Es setting ems
to v'.

Let us now suppose by absurd that although ce has caused the
update of ems from v to V', there exists an event ce’ € CE;", such
that t<ce'.ts<ce.ts, which is a trigger of v evolution. update-notifier
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has been defined in such a way to receive and process complex
event notifications based on time annotation in ascending order,
thus, ce’ is handled before ce. Since ce’ is a trigger of v evolution,
there exists an evolution ev’ based on v which specifies ce’.type
as complex event type. Let us now denote with v* the value re-
ferred to by ev'.trg, and with t* the value of ce’.ts. On receipt of
ce’, update-notifier updates ems to v*. By assumption ce, which is
processed after ce’, causes the update of ems from v to v'. There-
fore, at the processing time of ce, ems would refer to a value v*
potentially different from v, and, as a consequence, ce could not be
a trigger of v evolution, contradicting our initial statement.

Let us now consider how emergency and ordinary policies to
be applied to subjects’ access requests are determined. Let us start
with some preliminary definitions. We say that a an emergency
scenario Es involves a subject s iff s’ attributes satisfy the subject
filter expression sf of Es. Similarly, an emergency situation v of Es
involves a subject s iff Es involves s Es, and Es refers to v as its
current stage. In addition, s is said to be in an ordinary situation
iff all emergency scenarios where s is involved are inactive (i.e.,
they refer to L as their current stage), or s is not involved in any
scenario.

Let us now focus on policy applicability. Let ar be an access re-
quest issued by a subject s, which requires to read /write a mes-
sage on topic t, and let Ps be the set of ordinary and emergency
policies defined for the monitored environment tenv.

Let wus first consider emergency policies. Based on
Definition 6 in Section 5, an emergency policy ep of Ps is
said to be applicable to the access request ar iff: i) ep.s matches
s attributes, ii) s is involved in an emergency scenario Es which
is among the emergency scenarios referred to by ep.esf, iii) the
emergency situation v referred to as current stage of Es (where, v
#1) is among the emergency situations referred to by ep.stf, iv) t
is matched by ep.tf, and v) ep.pr matches the read/write privilege
requested by ar.

In contrast, an ordinary policy p of Ps is said to applicable to
the access request ar issued by s iff: i) s is not involved in any
emergency scenario or all scenarios where s is involved are inac-
tive, ii) p.s matches s attributes, v) t is matched by p.tf, and v) p.pr
matches the read/write privilege requested by ar.

Statement 6 (Correctness of policy selection). Any access request
ar issued by a subject s is regulated by a set of policies APs, where
APs C Ps, which is either entirely composed of emergency policies
or ordinary policies. Any emergency/ordinary policy p in APs is ap-
plicable to ar, and does not exist an emergency/ordinary policy p’
of Ps applicable to ar that does not belong to APs.

Discussion. Correctness of policy selection entirely rely on the
selection abilities of the enforcement monitor. For ordinary poli-
cies we rely on the mechanism described in Colombo and Fer-
rari (2018). Emergency policy selection is achieved by employing
a similar technique and therefore, in the current paper, its descrip-
tion has been omitted.
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