)

Check for
updates

Early-Stage Ransomware Detection Based
on Pre-attack Internal API Calls

(=)

Filippo Coglio, Ahmed Lekssays'*™’, Barbara Carminati, and Elena Ferrari

Universita degli Studi dell’Insubria, Varese, Italy
{fcoglio,alekssays,barbara.carminati,elena.ferrari}@uninsubria.it

Abstract. Ransomware attacks have become one of the main cyber
threats to companies and individuals. In recent years, different
approaches have been proposed to mitigate such attacks by analyzing
ransomware behavior during the infection and post-infection phases.
However, few works focused on early-stage ransomware detection. The
analysis of recent ransomware has shown that they are designed to per-
form sensing activities to evade detection by known anti-viruses and anti-
malware software. This paper proposes an early-stage ransomware detec-
tor based on a neural network model for multi-class classification. Our
model achieves 80.00% accuracy on our dataset and 93.00% on another
state-of-the-art dataset [10]. We show that our model performs better
than the state-of-the-art approaches, especially on a challenging, large,
and varied dataset we made publicly available.

1 Introduction

Ransomware is a type of malware that encrypts user data or restricts access
to infected devices and their resources. A ransomware exploits secure commu-
nication channels with C&C (Command and Control) servers to encrypt the
victims’ systems and force them to pay a ransom [8]. If the attacked entity
refuses to pay the ransom, data is deleted or published on the web. Ransomware
attacks have become one of the main cyber threats to both companies and indi-
viduals. In 2021, the average cost of a ransomware attack for companies was
$4.62 million, with an increase of 148% in the number of ransomware attacks
from 2020 to 2021'. This increase was expected due to ransomware-as-a-service
(RaaS) growth, where attackers sell their ransomware in underground markets,
and accept payments in cryptocurrencies to preserve their anonymity [9]. This
has turned ransomware into a lucrative tool for attackers who look for financial
gains [10].

In recent years, different approaches have been proposed to mitigate such
attacks using dynamic or static analysis to understand ransomware’s code struc-
ture and behavior during infection and post-infection phases. Despite all the
work, the defense against ransomware is challenging due to the lack of knowl-
edge of newly detected ransomware.

! https://www.pandasecurity.com /en/mediacenter /security /ransomware-statistics /.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Barolli (Ed.): AINA 2023, LNNS 654, pp. 417-429, 2023.
https://doi.org/10.1007/978-3-031-28451-9_36

418 F. Coglio et al.

Therefore, there is a need to investigate effective approaches for detecting
ransomware, keeping in mind their constant evolution. In this paper, we focus
on early-stage ransomware detection. The analysis of recent ransomware has
shown that they are programmed to execute some functions and operations to
evade detection by known anti-viruses and anti-malware software. These para-
noia activities aim to sense the environment to understand whether the ran-
somware can run the malicious code [10]. Thus, based on pre-attack activities,
we aim to detect ransomware before the encryption phase. We dynamically ana-
lyzed over 11,000 ransomware samples and 1,200 benign samples from 23 different
families to extract key API calls used by ransomware before launching attacks.
These API calls help in classifying samples into their corresponding ransomware
families or benign ones. We have developed a neural network model for multi-
class classification that achieves 80.00% accuracy on our dataset and 93.24% on
another state-of-the-art dataset [10]. We show that our model performs better
than the state-of-the-art approaches, especially on a challenging, large, and var-
ied dataset. In addition, we show the effectiveness and feasibility of the proposed
approach compared to previous work.

The contributions of this work can be summarized as follows: (i) we have
compiled a dataset of 5203 benign and ransomware samples from 12 differ-
ent families; to the best of our knowledge, it is the largest dataset available
for ransomware detection; (ii) we have developed a neural network model that
achieves an accuracy of 80.00% in a challenging, large, and varied dataset, out-
performing the state-of-the-art; (iii) we have made our source code and dataset
publicly available? to reproduce the results. The remainder of this paper is orga-
nized as follows. We discussed state-of-the-art approaches in Sect. 2. Section 3
presents background knowledge on ransomware detection. In Sect. 4, we discuss
our methodology and the building blocks of our solution. Section5 shows the
obtained results and the comparison with state-of-the-art approaches. Finally,
Sect. 6 concludes the paper.

2 Related Work

In the last years, different techniques have been proposed for ransomware classifi-
cation. [10] presents several machine-learning models for early-stage ransomware
classification based on pre-attack paranoia activities using API calls as features.
They have used different techniques for data representation: Occurrence of Words
(OoW), representing the presence/absence of a feature, Bag of Words (BoW),
expressing the frequency of a feature, and Sequence of Words (SoW), building a
chain of API calls to take into consideration the order in which an AP is executed.

The work in [2] presents an ML model for ransomware detection by com-
paring algorithms like Random Forest, Logistic Regression, Stochastic Gradient
Descent, etc. After performing a dynamic analysis using the Intel PIN tool’s
dynamic binary instrumentation (DBI), features are extracted according to the
CF-NCF (Class Frequency - Non-Class Frequency) technique. According to the

2 https://github.com/Ph1199/RansomwareEarlyDetection.

Early-Stage Ransomware Detection Based on Pre-attack Internal API Calls 419

authors, this process provides higher accuracy during classification experiments.
[6] proposes a behavioral classification method by analyzing 150 samples and
extracting a set of features and attributes based on reports from 3,

The authors of [8] presented a two-stage detection method based on dynamlc
analysis. The first stage relies on Markov chains, whereas the second relies on
Random Forest.

[16] relies on the Term Frequency-Inverse Document Frequency (TF-IDF)
of the N-grams extracted from opcodes. They analyze different N-gram feature
dimensions using various machine learning models. Similarly, [15] extracts N-
grams features from opcodes; but it only uses a Self-Attention Convolutional
Neural Network (SA-CNN) to test the approach, which worked well for some
long sequences of opcodes.

Despite the promising results of the above-mentioned papers, they have sev-
eral limitations. For instance, the usefulness of the obtained results may be
distorted by the limited number of analyzed samples, and the low variability of
families included in the training phase may not represent the current ransomware
landscape. We try to address these limitations by analyzing a more representa-
tive number of samples from 12 different families. Another limitation is that some
solutions (i.e., [15,16]) use a static analysis approach for extracting N-grams for
their models. This needs to deal with obfuscated ransomware samples, making
reverse engineering the most complex step. We resolve this obfuscation prob-
lem by using a dynamic analysis approach to capture the pre-attack activities
performed by ransomware samples.

Furthermore, our proposal focuses exclusively on ransomware detection,
unlike the work in [2,15,16]. Second, it focuses on early-stage ransomware detec-
tion, whereas all other works, with the exception of [10], focus on later stages
of detection. However, our work differs from [10] in the choice of the APT calls
considered in the detection phase. In addition, we tested our solution on, to the
best of our knowledge, the largest ransomware detection dataset including 12
different ransomware families, whereas the work on [10] has only been tested on
a dataset of 5 ransomware families.

3 Background

We introduce the ransomware and give a background on neural networks.

3.1 Ransomware

Ransomware is a type of malware that denies access to user files and demands
a ransom from users to regain access to the system and stored information [7].
Ransomware are mainly of two types:

Locker: it prevents the victim from reaching their files by denying access to
computing resources (e.g., locking the desktop or blocking the logging in) [7].

3 https://www.virustotal.com.

420 F. Coglio et al.

Crypto: it encrypts data on the target machine, holding it hostage until the
victim pays the ransom and obtains the decryption key from the attacker. Some
variants of crypto-ransomware will progressively delete hostage files or release
them to the public if the victim fails to pay the ransom on time.

Ransomware can be organized into families depending on their behavior and
the type of operations they perform. In the following, we present the main char-
acteristics of well-known ransomware families:

Cerber: it infects computers using common attack vectors, such as phishing
e-mails. It comes bundled with free online software. Cerber mainly utilizes mali-
cious Microsoft Office files with macros to spread and encrypt victim files.

CryptoWall: it writes its registry autorun keys in the Windows registry to
maintain its persistence through reboots. It then searches for all system restore
points and Volume Shadow Copy files and destroys them to prevent the victim
from restoring any file. Then, it begins encrypting files using the RSA-2048
encryption algorithm.

WannaCry: it is a crypto-ransomware that spreads by exploiting a Windows
Server Message Block (SMB) vulnerability that provides unrestricted access to
any computer running Windows. WannaCry is also able to propagate throughout
corporate LANs automatically. It encrypts files on the infected device and tries
to affect other devices in the network.

Locky: the most common technique used by Locky to infect systems is through
receiving an e-mail with a malicious Microsoft Word attachment. When this
attachment is opened, an executable is downloaded from a C&C server, a private
key is generated, and the ransomware starts encrypting files by infecting all
connected devices.

All the above families target a single operating system, that is, Windows,
which has been shown to be the most targeted operating system®. There are also
ransomware that target different OSs, like macOS, GNU/Linux, and Android,
but the percentage of attacks that target Windows-based machines is very high,
compared to other operating systems.

3.2 Artificial Neural Networks

We rely on Artificial Neural Networks (ANN) for multi-class classification, as
these are lightweight and give a good detection rate. ANNs are mainly com-
posed of many interconnected computational nodes (aka neurons), working in a
distributed fashion to collectively learn from the input. ANN nodes are divided
into layers: input and output layers, as well as various hidden layers between
them. Nodes in the input layer take a multidimensional vector as input and send
it to the hidden layer. Here, nodes perform nonlinear transformations of inputs

* https://www.statista.com /statistics /701020 /major-operating-systems-targeted-by-
ransomware/ .

Early-Stage Ransomware Detection Based on Pre-attack Internal API Calls 421

and send the results to another hidden layer or to the final output layer. In order
to output a value, a neuron in the hidden layer takes the weighted sum of all
its inputs and passes it through the activation function to obtain the results
[13]. The role of the activation function is to decide whether a neuron’s input
is important or not in the process of prediction. The most commonly used acti-
vation functions are: ReLu, Linear, Sigmoid, and SoftMax [13]. Having multiple
hidden layers stacked upon each other is commonly called deep learning [11].

4 Methodology

We discuss the building blocks of our methodology: data collection, feature
extraction, and classification.

4.1 Data Collection

Ransomware Samples. Sample collection has been challenging for different
reasons. First, since there is no unique online repository that contains all exist-
ing ransomware, we had to merge all repositories to avoid duplication. Second,
repositories use security vendors’ scores and sandbox results to map ransomware
to their respective families. However, these classifications may be incorrect or
not accurate, since some ransomware may have similar behavior but a com-
pletely different name. Finally, some families, like TeslaCrypt (and its variants,
like AgentTesla), may contain ransomware samples together with malware that
affect the choice of features used for ransomware detection. Thus, they should
not be considered for this research since they will affect its effectiveness. We
obtained a total of 11,523 samples detected in the last few years (i.e., 2018 2022)
by using different online repositories (i.e.,

and 7). Moreover, to have a balanced dataset the 11,523 collected
samples are evenly split into 23 families namely Ako, BB, Cerber, Conti, Cryp-
tolocker, Cryptowall, Erica, Fxpiro, Gandcrab, Hive, Kryptik, Lockbit, Lockfile,
Locky, Matriz, Matsnu, Shade, Stop, TeslaCrypt, Trik, Virlock, Wannacry, and
Winlock, where 501 samples represent each family.

Benign Software. To properly identify ransomware, we need to have some
benign software for the classification tasks.
We downloaded 1,111 benign samples from various sources (i.e.,

8 and 9). We focused on
benign software that have similar behavior to ransomware and use a large number
of API calls, such as file compressors, disk analyzers, anti-viruses, and password
managers. Table 1 shows the distribution of the benign samples.

® https://www.virustotal.com.

6 https://bazaar.abuse.ch /browse/.

7 https:/ /virusshare.com/.

8 https://www.portablefreeware.com/.
9 https://portableapps.com/.

422 F. Coglio et al.

Table 1. Benign samples distribution

Category Software Samples | Category Software Samples
Anti-viruses | McAfee 100 Disk analyzers CrystalDiskMark 36
Others 3 Others 4
Compressors | 7-Zip 28 Browsers Google Chrome 20
PeaZip 99 Others 5
Others 3 Miscellaneous Audacity 48
Graphics GIMP 79 FileZilla 73
Blender 50 VeraCrypt 15
JPEGView 21 Others 102
ScribusPortable | 19 Messaging clients | TelegramDesktop | 100
Others 4 Media players VLC 80
Text editors | AkelPad 36 Mail clients Various 3
Geany 18 Password managers | KeePassXC 23
Notepad 2 33 PDF managers Various 9
Notepad++ 100 Total 1111

4.2 Features Extraction

We used widely known tools and methods for running ransomware in a controlled
environment to perform a dynamic analysis of samples. We select the features to
be used for the classification task from the reports returned by dynamic analysis.
In this step, we are interested in studying the usage of API calls that software
use to communicate with the kernel. In our context, it is worth noting that a
feature is a binary vector that shows how the analyzed sample uses the specific
APIs. In this step, the main challenge is the selection of representative features
that could help distinguish different families. The similarity between samples
belonging to different families leads to a set of similar features that affect the
effectiveness of the developed ML models.

From the 12,634 analyzed samples, we removed the ones that failed to exe-
cute. Moreover, we removed the ones that belong to underrepresented families
(i.e., less than 200 samples), which were 11 families out of 23. We removed these
families to keep the dataset balanced. The final dataset contains 5203 samples
from 12 ransomware families, and one benign family (see Table 2). These samples
contain at least one occurrence of the API calls specified in Table 3.

Early-Stage Ransomware Detection Based on Pre-attack Internal API Calls 423

Table 2. Ransomware curated dataset

Family Samples
Cerber 450
CryptoWall | 450
Matsnu 450
Shade 450
Teslacrypt | 450
Benign 450
Hive 443
Ako 432
Erica 377
Conti 359
Matrix 331
Gandcrab | 295
Expiro 266
Total 5,203

We have chosen these API calls, shown in Table 3, based on the most used
evasion techniques adopted by ransomware, namely process injection, environ-
ment sensing, and unpacking. We present each of the evasion techniques in what
follows.

Process Injection. Code injection is the process of copying the code from an
injecting entity €;nject into a victim entity €yictim and executing this code within
the scope of €yictim [3]- The definition of a code injection does not specify the
place of residence of €;pject and €yictim- We can have two cases: if the attacker and
the victim reside on the same system, we refer to Host-Based Code Injection,
while if they reside on different systems, the process is called Remote Code
Injection.

Environment Sensing. Before executing the malicious payload, usually, an
attacker wants to determine if the environment is a virtual one or not [1]. Ran-
somware use different techniques for evading sandboxes and virtual analysis
environments. The first one is fingerprinting, which aims to detect the pres-
ence of sandboxes by looking for environmental artifacts that could indicate a
virtual /emulated machine. These signs can range from device drivers, overt files
on disk, and registry keys, to discrepancies in emulated /virtualized processors.
Another technique used in environment sensing is Reverse Turing Test which
checks for human interaction with the system. This tactic capitalizes on the fact
that sandboxes are automated machines with no human or operator directly
interacting with them. Thus, if malware does not observe any human interac-
tion, it presumes to be in a sandbox. The malware waits indefinitely for any

424 F. Coglio et al.

form of user input to test whether it is running on a real system. In a real sys-
tem, eventually, a key would be pressed, or the user would move a mouse. If that
occurs a specific number of times, the malware executes its malicious payload [1].

Unpacking. Packing is a common way for attackers to hide their code when
they create malware. Malware is then transmitted in a “scrambled” form, which
is then restored to its original form just before execution using unpacking tech-
niques [5]. Packers use different techniques for obfuscating malicious code. First,
they use multi-level compression to obfuscate the payload of an executable, mak-
ing it hard to perform reverse-engineering tasks on the executable [4]. Moreover,
packers can achieve malware polymorphism by producing different binaries, i.e.,
different hash signatures for the same payload [4,12]. Encryption is widely used
to conceal some parts of the code, which are then decrypted during unpacking
by using the encryption keys provided within the packed malware; finally, packers
may use techniques like dead code insertion and instruction permutation that aim
at making the unpacked malicious executable more challenging to analyze [12].

Table 3. Evasion APIs

Category Evasion Evasion API Description
techniques
Data access and storage | Unpacking MoveFileWithProgressW Move a file or directory, including its
children
Environment | NtCreateFile Creates a new file or directory or opens an
Sensing existing file
Process NtWriteFile Write data to an open file
Injection SetFileAttributesW Sets the attributes for a file or directory
GetDiskFreeSpaceExW Retrieve information about the amount of
space available on a disk
GetDiskFreeSpaceW Retrieves information about the specified
disk
ShellExecuteExW Perform an operation on a specified file
DeviceloControl Send a control code directly to a specified
device driver
Generic OS queries Environment | GetComputerNameW Retrieve the name of the local computer
Sensing NtQuerySystemInformation | Retrieve the specified system information
Memory management Unpacking GlobalMemoryStatusEx Retrieve information about the system
memory usage
Environment | NtAllocateVirtualMemory | Reserve a region of pages within the
Sensing user-mode virtual address space
Process NtMapViewOfSection Map specified part of Section Object into
Injection process memory
NtProtectVirtualMemory Change the protection on a region of
committed pages
NtUnmapViewOfSection Unmap a view of a section from the virtual
address space
WriteProcessMemory Writes data to an area of memory in a
specified process
LdrGetDIllHandle Loads a file in memory
Network Unpacking GetAdaptersAddresses Retrieve the addresses associated with the
adapters
Environment | InternetOpenA Initialize an application’s use of the
Sensing WinINet functions

(continued)

Early-Stage Ransomware Detection Based on Pre-attack Internal API Calls 425

Table 3. (continued)

Category Evasion Evasion API Description
techniques
Process Process CreateProcessInternal W Create a new process and its primary thread
Injection NtGetContextThread Return the user-mode context of the
specified thread
NtResumeThread Map specified part of Section Object into
process memory
NtSetContextThread Set the user-mode context of the specified
thread
NtTerminateProcess Terminate a process and all of its threads
Process32NextW Retrieve information about the next process
recorded in a snapshot
NtLoadDriver Load a driver into the system
Registry Process NtSetValueKey Create or replaces a registry key’s value
Injection entry
Environment | RegOpenKeyExW Open the specified registry key
Sensing RegQueryValueExW Retrieve the type and data for the specified
value name of a key
RegSetValueExW Set the data and type of a specified value
under a registry key
NtCreateKey Create a new registry key or opens an
existing one
Security Process CryptGenKey Generate a random cryptographic session
Injection key or a key pair
CryptExportKey Export a cryptographic key or a key pair
LookupPrivilegeValueW Retrieve the identifier used to represent the
specified privilege name
CryptHashData Add data to a specified hash object
Services Environment | CreateServiceW Create a service object and adds it to the
Sensing specified service manager
EnumServicesStatusW Enumerate services in the specified service
control manager database
UI artifacts Environment | SetWindowsHookExW Install an application-defined hook
Sensing procedure into a hook chain
FindWindowW Retrieve a handle to the top-level window

In Table 3, APIs that end with W have twin API that ends with A with a

similar goal. The difference in the names is due to the encoding. The APIs that
end with W work with Unicode strings and the ones that end with A work with
ANSI strings. For the sake of brevity, we included only the Unicode ones.

4.3 Classification

Since each ransomware family has unique characteristics, we model ransomware
detection as a multi-class classification problem where the classifier determines
which class (i.e., family) the ransomware belongs to. The state-of-the-art clas-
sifiers for this problem are Random Forest, Bernoulli Naive Bayes, k-Nearest
Neighbors, and Artificial Neural Networks (ANNs). In this paper, we use an

426 F. Coglio et al.

ANN (see Sect.5.2), since it is lightweight and gives good accuracy. Our arti-
ficial neural network has three layers with ReLu as an activation function. We
use dropout on the input and hidden layers to drop nodes and reduce overfitting
randomly. We also add a hidden layer with the Softmax activation function to
the network’s end.

dense_4_input | input: | [(None, 45)]

InputLayer output: | [(None, 45)]

!

dense_4 | input: (None, 45)

Dense | output: | (None, 512)

)

dense_5 | input: | (None, 512)
Dense | output: | (None, 256)

)

dense_6 | input: | (None, 256)
Dense | output: | (None, 128)

!

dropout_1 | input: | (None, 128)

Dropout | output: | (None, 128)

I

dense_7 | input: | (None, 128)
Dense | output: | (None, 24)

Fig. 1. Classification model architecture

Figure 1 depicts the model architecture. The hyperparameters for this net-
work are: the number of epochs (i.e., 50), indicating how many times the model
will iterate over the whole dataset, and the batch size (i.e., 15), denoting the
number of samples after which the network will adjust its internal parameters.

5 Experimental Results

As an environment, we used an Ubuntu virtual machine with installed the

(version 2.0.7)!° to execute ransomware samples. It is one
of the most widely used tools for analyzing the behaviors of malicious executa-
bles. We set up the sandbox with Windows 7 and basic software (e.g., Internet
Explorer, Windows Media Player), as well as sample files (e.g., Word documents,
PowerPoint slides). The ransomware is run in a controlled virtual machine, keep-
ing track of everything it does, like API calls, files opened, registry keys and files
dumped. All the behavioral characteristics are then saved into a JSON report,
which also contains the machine name, operating system, internet access, and
many other parameters. All the analyzed ransomware samples had access to the
internet to contact, if required, their C&C servers for downloading additional
malicious payloads.

10 https://cuckoosandbox.org)/ .

Early-Stage Ransomware Detection Based on Pre-attack Internal API Calls 427

5.1 Datasets

Our dataset (cfr. Table 2) consists of 5,203 samples distributed across 13 families
(including a benign family). In addition, we have used the dataset provided by
[10], which is composed of 2,994 ransomware samples from 5 families and 438
benign samples resulting in a total of 3,432 samples (cfr. Table4).

Table 4. Description of [10] dataset

Family | Reveton | TeslaCrypt | Cerber | Locky | Yakes | Benign | Total
Samples | 600 600 600 600 594 438 3432

5.2 Multi-class Classification

We tested several state-of-the-art classifiers, i.e., RF, BNB, KNN, and ANN (cfr.
Table5. With ANN, we reached good accuracy, especially in top-k accuracy
(k = 2) (cfr. Table5. ANN scores 80.00% in accuracy and 90.41% in top-2
categorical accuracy. We took the weighted average of all individual scores of
the classes (i.e., families) we have. Similarly to [10], we used the default scikit-

learn metrics'!.

Table 5. Multi-class classification results
Model Precision | Recall | Fl-score | Accuracy | Top-k Acc. (k=2)
Random forest 81.23% | 78.38% | 78.28% | 78.38% | 85.82%

Bernoulli Naive bayes |61.41% |56.38% |55.94% |56.38% | 67.33%
K-nearest neighbors 78.39% | 75.98% | 76.07% | 75.98% | 82.03%
Artificial neural network | 82.00% | 80.00% | 81.00% | 80.00% |90.41%

We then compared our approach with [10], since it is the only work with a
public dataset and source!? We ran their Random Forest classifier 5 times on
their dataset. Then, we used their dataset to train our Artificial Neural Network
model. The obtained results are promising since the ANN performs very well
even with a completely different dataset. The accuracy is 93.00%, and the top-2
categorical accuracy is 98.62% (see Table6).

1 https:/ /scikit-learn.org/stable/modules/model _evaluation.html.
12 Available on Github https://github.com/Rmayalam/Ransomware Paranoia.

428 F. Coglio et al.

Table 6. Comparison of our work with [10]

Approach Dataset Precision | Recall | Fl-score | Accuracy | Top-k Acc. (k=2)
[10] [10] 92.36% |92.30% | 92.19% |92.30% | 97.82%
Our approach | [10] 93.00% | 93.00% | 93.00% |93.00% |98.62%
[10] Our approach | 79.29% | 78.77% | 78.78% | 78.77% | 86.74%
Our approach | Our approach | 82.00% | 80.00% | 81.00% |80.00% | 90.41%

6 Conclusion

In this paper, we proposed an early-stage ransomware detector based on a neural
network model that achieves an accuracy of 80.00% in a challenging, large, and
varied dataset, outperforming the state-of-the-art. The dataset we have compiled
consists of 4753 ransomware samples from 12 different families and 450 benign
samples. To the best of our knowledge, it is the largest dataset available for
ransomware detection. We have made publicly available our source code and
dataset, to reproduce the results. This work can be extended in many directions.
First, we aim to make a decentralized version of it that runs over a blockchain.
Second, we plan to explore the effect of adding other features, such as the registry
and memory dumps, as input to our model. Third, we aim to explore other ML
techniques, like transformers [14] that perform well with huge amounts of data.

Acknowledgements. The authors would like to thank the authors of [10] for their
responsiveness and support. In addition, we would like to thank VirusTotal, VirusShare,
and Bazaar for providing us with the ransomware samples. This work has received fund-
ing from the Marie Sktodowska-Curie Innovative Training Network Real-time Analyt-
ics for Internet of Sports (RAIS), supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 813162. Additionally,
it has been partially supported by CONCORDIA, the Cybersecurity Competence Net-
work supported by the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 830927.

References

1. Afianian, A., Niksefat, S., Sadeghiyan, B., Baptiste, D.: Malware dynamic analysis
evasion techniques: a survey. ACM Comput. Surv. 52(6), 1-28 (2019)

2. Bae, S.I., Lee, G.B., Im, E.G.: Ransomware detection using machine learning algo-
rithms. Concurr. Comput. Pract. Exp. 32(18), e5422 (2020)

3. Barabosch, T., Gerhards-Padilla, E.: Host-based code injection attacks: a popular
technique used by malware. In: 2014 9th International Conference on Malicious
and Unwanted Software: The Americas (MALWARE), pp. 8-17. IEEE (2014)

4. Chakkaravarthy, S.S., Sangeetha, D., Vaidehi, V.: A survey on malware analysis
and mitigation techniques. Comput. Sci. Rev. 32, 1-23 (2019)

5. Coogan, K., Debray, S., Kaochar, T., Townsend, G.: Automatic static unpacking
of malware binaries. In: 2009 16th Working Conference on Reverse Engineering,
pp. 167-176. IEEE (2009)

Early-Stage Ransomware Detection Based on Pre-attack Internal API Calls 429

6.

10.

11.

12.

13.

14.

15.

16.

Daku, H., Zavarsky, P., Malik, Y.: Behavioral-based classification and identifica-
tion of ransomware variants using machine learning. In: 2018 17th IEEE Interna-
tional Conference on Trust, Security and Privacy in Computing and Communica-
tions/12th IEEE International Conference on Big Data Science and Engineering
(TrustCom/BigDataSE), pp. 1560-1564. IEEE (2018)

Hassan, N.A.: Ransomware families. In: Ransomware Revealed, pp. 47—68. Apress,
Berkeley, CA (2019). https://doi.org/10.1007/978-1-4842-4255-1 3

Hwang, J., Kim, J., Lee, S., Kim, K.: Two-stage ransomware detection using
dynamic analysis and machine learning techniques. Wirel. Pers. Commun. 112(4),
2597-2609 (2020). https://doi.org/10.1007 /s11277-020-07166-9

Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L., Kirda, E.: Cutting the Gor-
dian knot: a look under the hood of ransomware attacks. In: Almgren, M., Gulisano,
V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp. 3-24. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-20550-2 1

Molina, R.M.A., Torabi, S., Sarieddine, K., Bou-Harb, E., Bouguila, N., Assi,
C.: On ransomware family attribution using pre-attack paranoia activities. IEEE
Trans. Netw. Serv. Manag. 19(1), 19-36 (2021)

O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458 (2015)

Rad, B.B., Masrom, M., Ibrahim, S.: Camouflage in malware: from encryption to
metamorphism. Int. J. Comput. Sci. Netw. Secur. 12(8), 74-83 (2012)

Sharma, S., Sharma, S., Athaiya, A.: Activation functions in neural networks.
Towards Data Sci. 6(12), 310-316 (2017)

Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30
(2017)

Zhang, B., et al.: Ransomware classification using patch-based CNN and self-
attention network on embedded N-grams of opcodes. Futur. Gener. Comput. Syst.
110, 708-720 (2020)

Zhang, H., et al.: Classification of ransomware families with machine learning based
on N-gram of opcodes. Futur. Gener. Comput. Syst. 90, 211-221 (2019)

