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Abstract. In existing literature, GNN training has been performed mostly
in centralized, and sometimes federated, settings. In this work, we con-
sider a fully-decentralized data-private scenario, where each node has
limited knowledge of the surrounding graph. We propose the first ar-
chitecture that enables GNN training in this fully-decentralized setting,
by carefully combining several techniques, including decoupled learning,
self-supervision and Gossip Learning. We implement two simulation tools
to experimentally evaluate our solution. The results show that the pro-
posed technique can be effectively used in scenarios where centralized or
federated approaches are unfeasible or undesirable.
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Supervised Learning · Gossip Learning · Decoupled Learning.

1 Introduction

The rise of IoT, mobile devices and connected appliances has caused a fast in-
crease in the data available for training deep learning models to improve existing
digital services or provide innovative ones. However, the traditional centralized
approach of data collection, storage and processing is no longer suitable to this
task. The volume and velocity of data produced by these sources causes scala-
bility issues, especially in terms of data transfer, while the broad scope and high
granularity of these heterogeneous data streams raises questions about data pri-
vacy, data security and trust. Thus, there is an increasing need for truly decen-
tralized ML training solutions, where the data is stored privately on the original
devices and the training is performed over a scalable, peer-to-peer network.

Recent years have also seen the rise of graph-structured data, where the data
points are no longer independent inputs, but instead connected to each other
by explicit links, representing domain-specific relations which the ML models
must exploit to provide accurate predictions. This led to a growing interest in
the field of Graph Representation Learning (GRL)[4], and in particular Graph
Neural Networks (GNNs)[21]. However, the vast majority of the existing studies
have focused on a traditional, centralized training setting.

A few works have investigated the training of GNNs on edge devices using
Federated Learning[15]. However, Federated Learning requires a central trusted
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aggregator to combine the contributions of different devices, and thus cannot
fully eliminate the issues of scalability, trust and privacy. Furthermore, these
techniques assume that each device has a sufficiently large view of the graph to
perform a complete GNN training step, which is especially problematic for deep
GNNs that have a large receptive field.

By contrast, we consider the fully-decentralized training scenario that arises
in some edge and IoT settings, such as traffic prediction on smart city sensors at
road intersections, or predicting illness spreading based on mobile phone prox-
imity data. In these scenarios, each edge device represents an individual node in
the graph to be learned, and is not allowed to have any knowledge of the graph
other than the identity and features of its direct neighbours. Each interaction is
only known to the two nodes that performed it, and the feature of a node are
only known to those that have interacted directly with it. Thus, this scenario
guarantees that each device in only responsible for the smallest possible local
view and minimizes the dissemination of the raw graph data. Furthermore, the
training must happen in a peer-to-peer fashion, without any central aggregator,
and without requiring a device to be aware of all other devices in the network,
thus ensuring scalability and fault tolerance even in dynamic environments.

Unfortunately, this fully-decentralized scenario introduces new, significant
challenges, that cannot be addressed by simply taking existing federated solu-
tions and modifying the centralized parts. Specifically, a naive GNN training
implementation in this scenario requires a prohibitive amount of communication
to implement forward and backward message passing over the broad receptive
field of deep GNNs. Furthermore, it is plagued by synchronization issues across
the devices. To the best of our knowledge, no previous research has attempted
to tackle this type of fully-decentralized GNN training scenario, and thus no
solutions exist in the literature to overcome these issues.

Contribution In this work, we introduce DecGNN, the first fully-decentralized
GNN training architecture capable of removing the communication and synchro-
nization burdens that arise in the target scenario. We achieve this by carefully
combining techniques from several different research directions in a novel way.

We provide two different tools to simulate our decentralized architecture,
providing different levels of fidelity and enabling the analysis of different aspects
of the system. With the help of these tools, we evaluate DecGNN, which presents
a small gap to its centralized counterpart in downstream classification tasks, thus
showing that our approach is promising and can be effectively employed when a
centralized or federated solution is undesirable.

We also extensively discuss several key open questions and research directions
that might close the gap between our architecture and centralized solutions and
allow its deployment in real-world environments.
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2 Related Work

2.1 Decoupled Greedy Learning

Our work is closely related to decoupled greedy learning [9,2,3], a family of tech-
niques used to efficiently train large-scale models. It identifies forward and back-
ward locking constraints[9] as the main factors slowing down distributed deep
model training. The former represents the fact that the forward step of a layer
can only begin once all the up-stream layers have completed their own forward
layers. The latter instead occurs when the backward step of a layer needs to wait
for the backward step of all down-stream layers to complete.

The literature on decoupled greedy learning focuses on traditional, datacenter-
scale training, where model parallelism is often used, and where these constraints
result in some of the hardware accelerators, or even entire servers, idly waiting
for the inputs needed to run the layers assigned to them. Thus, these constraints
effectively limit the level of parallelism that can be achieved in the training of
deep models. In our case, the issue is not limited to idling and synchroniza-
tion, but also includes the large number of messages that need to be exchanged
between the different nodes at each layer.

The backward locking issue can be solved by introducing a new local source
of gradients for each layer. Previous work has employed auxiliary trainable net-
works, which either predict the expected gradient[9], or predict the down-stream
task labels to generate backward gradients[2,3]. In our solution, we instead use
a self-supervised loss function that is independent of the down-stream task and
does not introduce additional trainable weights. For the forward locking issue,
[2] suggests the use of replay buffers between layers, to hold and reuse previous
activations, the same approach that we employ in this work.

2.2 Federated Training of GNNs

Federated Learning[15,22] is the most popular approach for collaborative train-
ing on massively-decentralized data. In it, each data-owning device performs for-
ward and backward model calculations on its local data to produce a gradient. A
central aggregator then collects all these gradients, merges them into the model,
and broadcasts the updated model to all participants. In this context, several
works have explored the use of Federated Learning for training GNNs[12,20,8].
However, two key differences exist between these studies and our own.

First, these studies assume that each device holds either one or more complete
graphs, or a large enough subgraph to allow the local computation of the forward
and backward passes of a multi-layer GNN. Thus, network communication is only
needed to aggregate the locally-computed gradients via the central aggregator.
In our scenario, each individual device represents a single node in the logical
graph and has a very limited view of its surroundings, insufficient to perform
the training without additional peer-to-peer collaboration during the forward
and backward passes.
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Second, while Federated Learning, when combined with effective privacy
preservation techniques, can enable a certain degree of data privacy, it still relies
on a central aggregator and thus shares some of the issues of a traditional cen-
tralized training. One of these is trust, as the aggregator may use its privileged
position to attempt to leak data from the received gradients, or simply to bias
the aggregation and thus training procedure. Another issue is scalability, as the
aggregator must scale its networking and memory to support all participants and
represents a single point of failure that can completely stop the training process
if taken down. We therefore employ Gossip Learning[17,7], a fully-decentralized
alternative to Federated Learning that relies on robust and scalable peer-to-peer
communications instead of a central, trusted aggregator.

3 DecGNN Architecture

3.1 Scenario

Two different graphs exist in DecGNN. The first is the communication graph,
which forms the infrastructure over which the decentralized training is per-
formed. This graph is composed of a large set of physical devices, which are
able to communicate freely with each other, for example via the Internet or a
local network. As such, this first graph is effectively fully-connected.

The second is the domain-specific logical graph on which the self-supervised
GNN is trained. The nodes of this graph match one-to-one with the physical
devices. However, this graph is sparse, containing only a subset of all possible
edges, according to a domain-specific definition of what it means for two nodes
to be connected. While any pair of devices can communicate with each other to
exchange information during training, the GNN message passing only happens
on top of the logical graph.

As an example, consider a mobile fitness app. Each device is a smartphone,
matching one-to-one with a node, representing a user. Each device stores the
features of its user, such as age and gender, and a list of friends together with
whom the user has exercised. A GNN could be trained on this graph to pre-
dict future exercising behaviour. Alternatively, wireless communications could
be used by the smartphones to automatically detect proximity and interactions
between individuals during a pandemic, and the information could be used to
track the spreading of the illness.

As mentioned, one of the advantages of DecGNN is that it does not require
global knowledge of either the logical or communication graph. More specifically,
on the logical graph, each node only stores its one-hop neighbourhood, i.e. only
the edges incident to itself and the features of its direct neighbours. Furthermore,
each node is only aware of a random subset of the communication graph.

3.2 Decoupled Learning via Layer-wise Self-Supervision

In the given scenario, decentralizing the training of a GNN is challenging, as
shown in fig. 1. The embedding of a node at layer i depends on those of each
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Fig. 1. Computational tree of the forward and backward passes for computing a node
embedding in a 2-layer GNN. Note the large number of embeddings and gradients that
would be exchanged across the network in a naive decentralized implementation.

neighbour at layer i − 1, and so the forward step of layer i must wait for the
completion of the forward step of layer i−1 at all neighbours. The backward pass
is even more challenging: the gradients from layer i+1 of all neighbours must be
waited for and accumulated to update the layer-i weights, and to then compute
separate gradients to send to each individual neighbour for layer i − 1. These
forward and backward locking introduce significant synchronization and network
traffic, rendering a naive decentralized training procedure extremely inefficient.

To counter these issues, we decouple the learning at each layer and at each
node, removing all dependencies and synchronization points. The key technique
we employ to achieve this is layer-wise self-supervision, with the architecture
shown in fig. 2. First, we insert gradient stops between all layers of the GNN.
Thus, each layer acts as an independent model, treating the embeddings pro-
duced by the previous layer as static, non-trainable feature vectors. In this way,
no gradients flow between different nodes, and no communication or synchro-
nization is necessary during the backward pass. Unfortunately, this approach
completely removes the external training signal provided by a down-stream loss
function. To compensate for this, each layer is equipped with its own auxiliary
loss function.
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Fig. 2. Structure of an individual DecGNN layer within a node
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We opt for a self-supervised auxiliary loss[18,10], rather than a supervised
one, as the latter could potentially discard patterns that cannot be directly used
to perform the supervised task, but that could become useful in subsequent
layers, after additional non-linear transformations. Self-supervised loss functions
are instead designed to ensure that the produced embeddings capture all relevant
phenomena to reconstruct the original data distribution[10] By using a self-
supervised loss in each layer, in theory, the final representations produced by
DecGNN should contain all signals useful to any down-stream task.

Within an individual node, each layer only produces a single output vec-
tor: the representation of the local device for that layer. This is not sufficient
information to produce gradients through a self-supervised loss. Negative sam-
ples are necessary. These may be used explicitly, as is the case with contrastive
loss functions[10], or implicitly by requiring the inputs to be fed in uniformly-
distributed batched, as is the case with non-contrastive losses[18] In this work we
employ a non-contrastive loss, and thus each node, in order to produce gradients
to update the weights layer i, must feed its i-th self supervised loss function with
a batch containing a uniform random sample of the node embeddings produced
by layer i across the whole graph.

We thus employ a push-based random sampling approach, where at the end
of each local training iteration each node will push its own embeddings for each
layer, that it just produced, to a number of randomly-chosen devices. The receiv-
ing devices will then be able to use those embeddings, along with those received
from others, to build a batch for each layer in their next local training iteration.

3.3 Asynchronicity, Staleness and Network Traffic

One key feature of this decoupled learning approach is its full asynchronicity.
All inputs necessary to perform a training step on layer i – the embeddings of
the neighbours at layer i − 1 and the layer i embeddings from random nodes –
are stored locally, to ensure that each node can act even when not receiving all
updates in a timely fashion.

For neighbours, the most recent embedding received from their forward steps
is cached, thus allowing each node to perform its own forward pass at any point
without having to wait for fresh information, at the expense of using partially
stale information. Random node embeddings are stored in a buffer of length K
with a first-in, first-out (FIFO) policy, so that newly received vectors replace the
oldest and most stale ones. This allows the entire buffer to be used to maximize
the size of the batch fed to the loss function, without requiring K vectors to be
received at each step, at the cost of some stale vectors being reused in multiple
subsequent gradient computations.

The ability of the model to train even when using partially stale informa-
tion can also be exploited to reduce network communication requirements. More
specifically, if nodes do not require the receipt of K random vector to operate,
then it is not necessary for them to send their embeddings to K random peers at
each iteration. Instead, they may reduce the network pressure by only sending
them to K ′ < K peers, with the choice of K ′ trading off between embedding
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staleness and network traffic. Similarly, nodes with many neighbours in the log-
ical graph may not need to broadcast their embeddings to all of them at each
iteration. Instead, they may use a round-robin policy to update a subset of them
each time, again achieving a staleness-traffic tradeoff.

3.4 Gossip Learning

The decoupled learning architecture presented above solves the GNN-specific
issue of long-range forward and backward dependencies across nodes. However,
decentralized training of ML models more in general presents another challenge:
how can all devices converge to the same model parameters without the need
for a central aggregator or coordinator?

To tackle this challenge, we employ Gossip Learning[17], a very robust[7] and
scalable protocol for decentralized training, based on peer-to-peer exchanges of
the model weights. Each node maintains a FIFO buffer with the latest two
models received from peers. In each iteration, it merges the two models in its
buffer by averaging their weights, performs one step of local training of the
resulting aggregated model, and then forwards it to a randomly-chosen peer.
From a different perspective, each model can be seen as performing a random
walk over the fully-connected communication graph. At each step, it learns not
only the information on that individual device, but also all the information that
was known to the previous visitor of the same device. Thus, Gossip Learning
allows very fast and efficient information propagation and thus results in quick
convergence.

3.5 Peer Sampling

For DecGNN to work, each device must be able to select peers uniformly at
random from the whole network. This is needed for both sharing model weights
in Gossip Learning and spreading embedding vectors to be used in the self-
supervised loss. However, it is unrealistic to expect each device to maintain a
list of all other participants. This would not scale to large deployments, and
maintaining accurate information would be very challenging in a dynamic envi-
ronment, where devices may join and leave at any moment.

Instead, we employ a peer sampling protocol[11] Also known as decentralized
membership management protocols, these are peer-to-peer protocols that allow
each device to build a small, uniformly-distributed random sample of the overall
network. These samples are frequently exchanged between peers, typically piggy-
backed to existing communications, giving each device the chance to know about
and contact any other peer. Furthermore, the samples are typically timestamped
so that stale entries representing nodes that left the network can be quickly
identified and removed.

In DecGNN we employ a simple push-based peer sampling protocol, with
the sharing of samples piggy-backed to the existing Gossip Learning messages.
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3.6 Memory Complexity

As discussed in section 3.3, the frequent use of buffering enables fully-asynchronous
training and can reduce network pressure. Unfortunately, it can also leads to sig-
nificant memory pressure. In DecGNN, each device v needs to store:

– The contact information (e.g. IP address and network port) of all its neigh-
bours and of the random network sample from the peer sampling protocol.
This only has a negligible contribution on the overall memory footprint, due
to the small size of each entry.

– Three copies of the model weights: two in the FIFO buffer, received from
peers, and the combined one used for training. This is not specific to our
architecture, but rather a common requirement in all instances of Gossip
Learning. With an L-layer GNN and D-dimensional feature and embedding
spaces, this results in roughly 3 ·D2 · L weights.

– Output embeddings of each GNN layer from K random peers, and input
embeddings (or features in the case of layer 1) for each GNN layer from all
Nv neighbours of node v. With the same assumptions as before, this results
in (Nv + K) · L embedding vectors, or (Nv + K) · L ·D scalars.

Overall, this leads to a memory usage of O ((Nv + K + D) ·D · L) scalars.
One one hand, this asymptotic complexity does not appear problematic. Nv and
K are not expected to grow significantly with network size and even advanced
GNNs are relatively shallow models, with L typically chosen from {2, 3}, so
scalability to large networks and complex GNNs is not an issue. On the other
hand, even small graphs may present relatively large values of Nv and K, and
the formula does not account for significant constant factors, such as the need to
store three copies of the model. Thus, it might be challenging to deploy DecGNN
on small, extremely memory-constrained IoT devices.

3.7 Communication Complexity

From a network perspective, each node needs to send K ′ + N ′ + 1 messages
after each iteration. K ′ + N ′ messages contain the output embeddings of the
node from each of the L layers, and are addressed to K ′ random peers and N ′

neighbours. The size of each of these messages is D · L scalars. One additional
message is used to gossip the model weights and to share a portion of the local
random peer sample. With the latter having negligible footprint, as discussed in
section 3.6, the size of this message is roughly D2 · L.

Fortunately, as mentioned in section 3.3, the need for DecGNN to robustly
handle stale information during training provides a simple way to reduce the
network pressure of the training, by controlling the number K ′ <= K of random
peers and the number N ′ <= Nv of neighbours that will receive the embeddings
of node v after every iteration.
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4 Implementation

To efficiently evaluate DecGNN, we implemented two different test programs,
which we make available as open source software1. One is a complete simula-
tor of a decentralized environment, reproducing all components of the proposed
architecture. The other represents a centralized approximation, which only cap-
tures certain aspects of the decentralized system, but which enables fast study
iterations and experimentation with certain parameters.

4.1 Full Simulator

The complete simulator is a carefully-optimized multi-threaded C++ program
targeting Linux-based operating systems and using LibTorch, the C++ fron-
tend of PyTorch, to enable efficient deep learning. Based on experiments run on
AMD Zen2 CPUs at a frequency of 2.25 GHz, it is capable of simulating over
100 devices per hardware core, when each device is set to perform one training
step per second. Thus, scalability to large numbers of simulated devices can be
achieved by increasing the number of cores used and/or decreasing the training
frequency of each device to fit more in a single core.

The memory, computation and network communication of each device are
simulated individually, providing a near-perfect replica of a real-world deploy-
ment. The only limitation is the lack of IP stack simulation: all messages are
reliably delivered to recipient within the span of one iteration. This limitation
is equivalent to stating that the target real-world environment presents reliable
network communications and that the time between training iterations is much
larger than the typical network communication time. The second statement is
typically true, as smartphones and other power-constrained IoT devices are not
expected to perform continuous, high-frequency training. The first statement
holds if TCP communications are used, but not if UDP is employed. The use of
TCP communications may be reasonable in this scenario, especially considering
that the messages between devices may be larger than the what a single UDP
packet can carry.

4.2 Approximate Emulator

The emulator consists of a simple Python script which employs the PyTorch
library and supports GPU acceleration. To minimize the memory footprint and
to enable effective acceleration, which requires the use of few, large matrix op-
erations rather than many smaller ones, the emulator forgoes several of aspects
of the DecGNN architecture. A single copy of the model is stored and updated
at each iteration, thus removing the Gossip Learning component and resulting
in all node embeddings always being up to date, never stale. The emulator still
maintains the sparse negative sampling and the layer-wise training, but the var-
ious layers are trained sequentially, rather than in parallel, and the sampling is
based on global information, rather than a peer sampling protocol.

1 Link blinded for peer review
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Despite its limitations, this emulator is useful to quickly obtain performance
estimates on multiple datasets, and also allows a partial “ablation study” of
the architecture, to assess how the lack of global information and the decoupled
layer-wise training affect the overall quality of the resulting embedding.

5 Evaluation

We evaluate DecGNN using a mix of full and approximate simulations, using
both the programs we developed. The goal of this evaluation is not to provide a
comprehensive study of all hyperparameters, identify the best-performing model,
or reach state-of-the-art results. Instead, the goal is to compare the centralized
and decentralized training of a simple GNN model to measure the performance
penalty incurred by the latter and evaluate the tradeoff offered by DecGNN with
respect to decentralization and prediction quality.

5.1 Setup

For a fair comparison, we train the same GNN architecture in both centralized
and decentralized settings, using the same self-supervised loss function for both,
applied at the final layer in the centralized case and at every layer in the de-
centralized one, as dicussed in section 3.2. We then separately train a logistic
regressor on top of these embeddings to predict ground-truth node labels. We
use the average 5-fold cross-validation accuracy on this task as a proxy for the
quality of the embeddings produced by the self-supervised GNNs.

In terms of GNN architecture, we utilize a simple 2-layer GCN[14] with em-
bedding dimension D = 128. For the loss function, we use a variant of VICReg
(Variance-Invariance-Covariance Regularizaion)[1] modified to operate on a sin-
gle embedding matrix, rather than to compare embeddings from two different
input augmentations. As such, it forgoes the invariance terms while maintaining
the others unmodified. Based on early exploratory analysis, this provided better
results than other options tested.

The hyperparameters of DecGNN are set as follows. The size of the random
embeddings buffer is set as K = 20, while K ′ = 5. The same values are also
used for the peer sampling protocol, in terms of size of the sample and size of
the subsample exchanged at each iteration. Backpropagation is only performed
once at least 5 random embeddings have been received from peers.

Table 1. Dataset characteristics

Name Nodes Edges Classes

Cora ML 2,995 16,316 7

Citeseer 4,230 10,674 6

DBLP 17,716 105,734 4
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Table 1 summarizes the characteristics of the datasets employed. All datasets
were retrieve via the Pytorch Geometric library, specifically using the torch geo-

metric.datasets.CitationFull loader.

5.2 Results

The first and third column of table 2 show the results obtained from DecGNN
using the complete C++ simulator on the three datasets, compared with an
equivalent centralized implementation. The results for each dataset is the aver-
age over 5 separate runs. There is a clear gap between the performance of the
decentralized model compared to its centralized counterpart. This is intuitively
expected. In the centralized scenario, the self-supervised loss can operate on the
entire embedding matrix, thus using global knowledge of the graph to push the
embeddings towards an optimal distribution. Furthermore, the gradients com-
puted by the loss travel backwards across all layers, optimizing the whole network
to perform its task. On the other hand, in DecGNN, the loss operating on each
node only sees a small portion of the network and cannot affect the represen-
tations of previous layers. Furthermore, asynchronicity and staleness may also
hinder the decentralized training, by adding noise to the embeddings fed to the
model and loss.

However, the gap is relatively small, and therefore DecGNN may be a viable
solution in those scenarios where centralized training is not feasible or desir-
able. Considering that, due to limited time and resources, no in-depth tuning of
the architecture was performed, these results show that DecGNN is a promising
technique, allowing a GNN to learn the graph phenomena without the need for
global knowledge, centralized training or orchestration, or expensive decentral-
ized backpropagation.

The second column of the table represents the results obtained when perform-
ing an approximate emulation of the decentralized architecture, as discussed in
section 4.2. In two of three datasets, these are slightly higher than the true de-
centralized model, while on the third they are marginally lower. Overall, also
taking into consideration the larger run-to-run variance compared to the cen-
tralized solution, it appears that the approximate Python emulator provides a
slightly optimistic prediction of the decentralized performance.

Table 2. Quality of the self-supervised embeddings produced by DecGNN vs central-
ized training of the same GNN architecture, measured using the accuracy score on a
down-stream classification task. Results over five runs.

Dataset

DecGNN

CentralizedFull Approximate

Simulation Simulation

Cora ML 76.2 ± 1.7 79.4 ± 1.5 81.1 ± 0.5

Citeseer 79.1 ± 1.1 78.8 ± 1.0 81.5 ± 0.7

DBLP 71.8 ± 1.4 75.9 ± 1.0 79.1 ± 0.6
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Fig. 3. Performance of various emulator configurations on Cora ML.

Figure 3 delves deeper into the Cora ML dataset, showcasing the range of
configuration that can be quickly tested with a less accurate, centralized, GPU-
accelerated emulator. It shows each of the 5 runs on the dataset, for a range of
configurations:

– traditional end-to-end training, where all layers are trained jointly and the
loss function has access to the full graph as a single batch;

– end-to-end but sparse training, where all layers are trained jointly but the
loss emulates the knowledge of just a few random embeddings at each node;

– decoupled training of each layer, with the layers trained sequentially starting
from the best accuracy of the previous ones, but with each loss function
having access to the full graph;

– decoupled and sparse training, which is the best approximation of the fully-
decentralized environment of DecGNN.

For the latter two cases, the graph plots the accuracy curve of each layer.
It is clear from the figure that restricting the input of the loss function at

each node to a small random subset of the graph does not affect significantly the
average accuracy, although it appears to be the cause of the increased run-to-run
variance observed in table 2. On the other hand, the figure indicates that at least
part of the gap between centralized and decentralized training can be attributed
to the decoupled, layer-wise training. It appears that, on the datasets tested,
the first layer follows a slightly slower learning curve compared to end-to-end
training. The second layer immediately provides a small but visible uptick in
accuracy, but then proceeds almost flatly, achieving only minor improvements
over additional epochs.

Still, as mentioned, these results are in most cases slightly higher than what is
achieved in a more realistic decentralized simulation. Thus, the remaining drop
in accuracy can be attributed to those aspects that are not captured by the
approximate emulation. One aspect is the staleness of the embeddings being fed
to the model in the decentralized setting, which may increase the amount of noise
in the training and hamper the learning process. Another is the simultaneous,
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rather than sequential, training of the layers. The reason for this choice is that,
in a truly decentralized setting, it is not trivial to establish when a certain layer
has achieved peak accuracy and to coordinate the shift to the next layer, as is
instead trivially done in a centralized setting.

6 Limitations and Future Work

While the results presented above look very promising, more work is needed
to fully explore the potential of DecGNN and maximize its capabilities. In
fact, given the number of techniques that had to be combined to achieve fully-
decentralized GNN training, and thus given the many different aspects that can
be further researched and analyzed in detail, we believe that this work may rep-
resent the first of a long list, with the final goal of closing the gap to centralized
alternatives and achieving real-world usage of DecGNN.

Large-Scale and Advanced Evaluation First, this work only tested DecGNN with
a simple GCN architecture with relatively small datasets. With more time and
more computational resources, a future study may survey the leading edge of the
GRL field, in terms of use cases, large datasets and advanced model architectures,
evaluating the quality and convergence speed of DecGNN in a wide range of
scenarios, on more realistic data and with better performing models.

Architecture and Hyperparameter Tuning As mentioned, DecGNN combines sev-
eral components to achieve its goals. Each of these components comes with a
number of tunable hyperparameters, and in some cases even completely different
architectural options. As it would be impossible to thoroughly analyze each of
these choices within the scope of a single study, in this work we have chosen
what we consider reasonable default values, based on existing literature.

We here provide four notable examples of potential architectural changes that
may need exploration. First, the dissemination of random node embeddings, in-
stead of being achieved through random peer sampling, could be performed with
random walks over the logical graph. If properly biased, these walks may improve
the distribution of the samples, ensuring that key anchor nodes are sampled
more frequently and that close neighbours present similar samples, for better
convergence in the embedding space. Second, the decoupled learning architec-
ture could be relaxed, allowing partial and limited dissemination of backward
gradients. This could improve the coupling within the network and guide the
early layers to produce activations more suitable to build high-level embeddings,
without requiring the high degree of locking and large number of messages that
a full backward pass would entail. Third, due to the model mixing performed
by the Gossip Learning process, the Adam optimizer[13], which is well-known to
be very effective, or any other moment-based optimizer cannot be used: at each
iteration, in fact, the model to optimize may differ significantly from the one
at the previous iteration, rendering any stored moments invalid. In this work,
a simple SGD optimizer was used, but in the future optimizers specifically tai-
lored for Gossip Learning should be developed to achieve better convergence.
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Fourth, as discussed in section 5.2, it may be beneficial to train the various
GNN layers sequentially, rather than simultaneously. However, this is not triv-
ial in a fully-decentralized setting. Thus, future work may look into approaches
to track the quality of the embeddings in a decentralized fashion and enable a
smooth, consensus-driven transition between the training of different layers. The
mechanisms employed to achieve this could then also be extended to detect and
handle data drift, which may arise due to changes in the set of participating
devices, or due to changes in the data stored on those devices, such as when not
only the communication graph, but also the logical graph is dynamic.

Memory and Network Pressure Another potential area for future exploration
concerns approaches to reduce the memory and network pressure of DecGNN.
As discussed in section 3.6, memory requirements may be the main limitation to
the deployment of DecGNN on constrained IoT devices. Network requirements,
on the other hand, can be lowered at the cost of increased staleness by reducing
the number of messages sent per iteration, as mentioned in section 3.7.

A different direction would be to instead reduce the size of each message,
by compressing node embeddings and model weights. This could be achieved
by reducing the precision of each scalar, such as by switching to half-precision
floating point formats, and/or by employing sparsification techniques[19]. The
weights and embeddings could also be stored in compressed format by the re-
ceiving device, thus reducing both the network and memory pressure. As each
layer is treated as an independent model, the device would need to decompress
only the embeddings and weights relative to one layer at a time, during the
training step. Note that the addition of these compression would not modify
the training process itself, which would still rely on traditional 32 bits precision
operations. As an additional optimization, quantized training could be used to
further reduce memory and computation requirements[5].

Privacy Considerations Finally, while ensuring data privacy was one of the mo-
tivations to develop DecGNN, this work has not focused on the rigorous analysis
of privacy guarantees, which is left for future work. The current architecture min-
imizes the knowledge of the raw logical graph, by requiring each node to only
know its own edges and the features of its direct neighbours. However, several
studies have shown that deep learning models can easily leak private training
data[16]. Thus, it is necessary to assess the privacy impact of sharing node em-
beddings and the weights of the model being trained. If needed, well-established
privacy-preservation techniques, such as Differential Privacy[6], should be com-
bined with DecGNN to provide stronger privacy guarantees.

7 Conclusions

In existing literature, GNN training has been performed almost exclusively in
centralized, and sometimes federated, settings, which may raise issues of scala-
bility, fault tolerance, trust and privacy. In this work, we envisioned DecGNN,
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a fully-decentralized, data-private architecture for GNN training, which natu-
rally addresses these issues. Our evaluation showed that our direction is promis-
ing, with only a relatively small performance gap to centralized settings. Fur-
thermore, we laid out a clear path for future research to close this gap, hope-
fully laying the foundation for a line of work that will enable large-scale, fully-
decentralized training of GNNs in a real-world setting.
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