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Abstract—Differential privacy (DP) is a method to protect indi-
vidual privacy when the data is used for downstream analytical
tasks. The core ability of DP to quantify privacy numerically
separates it from other privacy-preserving methods. In human
activity recognition (HAR), differential privacy can protect users’
privacy who contribute their data to train machine learning
algorithms. While some methods are developed for privacy pro-
tection in such cases, no method quantifies privacy and seamlessly
integrates into machine learning frameworks like DP. The paper
proposes a DP framework called TEMPDIFF (short for temporal
differential privacy), which guarantees privacy preserving human
activity recognition for wearable time-series data with compet-
itive classification performance and works with any machine-
learning/deep-learning methods. TEMPDIFF capitalizes on the
temporal characteristics of wearable sensor data to improve
the modelling task, which enhances the privacy-utility tradeoff.
TEMPDIFF uses ensembling and a novel temporal partitioning
algorithm for time-series data to ensure optimal training of
ensemble models. In TEMPDIFF, consensus through ensembling
and the addition of controlled Laplacian noise obscures sensitive
information used to train the models, guaranteeing strict levels
of differential privacy. The proposed method is evaluated on two
popular HAR datasets. It outperforms the classification accuracy
and privacy budget for both datasets compared to the state-of-
the-art approaches.

Index Terms—Privacy, Differential Privacy, Deep Learning,
Time-Series, Human Activity Recognition

I. INTRODUCTION

Differential privacy (DP) is a privacy-preserving technique
that can protect individuals’ privacy when their data is used for
machine learning or other data analysis tasks [6]–[8]. The idea
is to add controlled noise to the data so that information about
individuals gets abstracted. In this way, the attacker cannot
identify individual information, but the aggregated data can
still be successfully used for downstream analytical tasks. One
potential use of differential privacy is in the area of human
activity recognition (HAR). In HAR, differential privacy can
be used to protect the privacy of individuals whose data is used
to train machine learning models for activity recognition. For
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example, consider a scenario where a company is developing
a machine-learning model to recognize and classify different
types of physical activity, such as running, walking, or biking.
This model might be trained on data collected from many
individuals’ sensors or devices. Without differential privacy,
the training data for this model could potentially be used
to reveal sensitive information about the individuals who
provided the data, such as their daily routines, physical activity
levels, and location. By applying differential privacy to the
training data, it is possible to protect the privacy of these
individuals while still allowing the model to be trained on
a large and diverse dataset. Thus improving both privacy and
utility in the downstream HAR task.

In promoting the utility of HAR tasks, ensembles have
played a significant role by improving their classification
performance [3], [5], [15], [22], [27]. Moreover, ensembles
also promote privacy through DP techniques such as subsam-
pling and aggregation [8]. The approach involves training an
ensemble of models on disjoint data partitions and aggregating
them with noise to achieve differential privacy [19], [22], [23],
[32]. The ensembling method in this strategy relies on the
idea that if multiple models, trained on disjoint data subsets,
agree on a classification, they have learned a general trend
rather than memorizing specific examples. Consequently, even
though highly sensitive data might influence a prediction’s
outcome in this setup, it will only be present in a single
data subset and train a single model. As such, this data
would only contribute one input to the ensemble’s aggregation
function, making it inherently challenging to identify its source
solely from the aggregated output. A larger number of models
influencing the aggregation function enhances the capacity
to obscure private information. The simple proposition of
enhanced privacy through more models makes subsampling
and aggregation a rather convenient choice for integrating DP
in machine learning problems. However, to the best of our
knowledge, no previous works have attempted to formulate a
differentially private HAR system using the subsampling and
aggregation. Hence in this work, we employ the same to train
a large ensemble of models to provide differentially private
HAR for time-series data.

Realizing the above goal for time-series data requires the
following:



Model 1

Model N

Student Model

  Unlabelled Public Time-Series Data

Predicted Class 

         Votes

Noisy Class 

      Votes

Noisy Labels
.

.

.
Labelled Public Time-Series Data

partition1
partition2

partitionM

Sensitive time-series data

Temporal Partitioning

Temporal Partitioning

.

.

.

pa
rt
it
io

n 1

partition
M

partition2

.

.

.

.

Aggregate Teacher Model

Model 1

Noise Injection

S
t
u
d
e
n
t
 
M

o
d
e
l 
T
r
a
in

in
g

A. Temporal partitioning and 

     teacher model training
B. Noisy aggregation C. Student Model Training

Model 1

Model N

Model N

.

.

.

.

.

.

Te
a
c
h
e
r 

M
o
d
e
l 
Tr

a
in

in
g

Temporal Partitioning

Fig. 1. TEMPDIFF for differentially private HAR. A. We partition our sensitive time-series HAR data in M partitions and feed each partition in temporal
partitioning, which trains N teacher models per partition. B. Public time-series HAR data is labeled using the trained teachers and noisy aggregation C. Train
a student model using the public time-series data and noisy labels.

• Partitioning the time-series data into disjoint partitions.
• Extracting temporal sequences of specific window sizes

from each partition to train individual models for aggre-
gation.

However, training many models necessitate a corresponding
increase in data partitions. As the number of partitions grows,
the amount of training data per partition decreases, potentially
compromising the quality of model training. While the quan-
tity of the training data can be counteracted by having more
meaningful and diverse data, using a single window size to ex-
tract temporal sequences in the time-series classification limits
the diversity. Instead, using multiple window sizes to extract
different temporal sequences offers a broadened exploration
of the time series by presenting a different view of the data.
Leveraging these temporal sequences to train different models
improves classification over the standard method. Moreover,
the efficacy of this technique, employing varying window sizes
for enhanced data representation, has also been validated in
prior HAR studies [21], [27]. Hence in this paper, we propose
TEMPDIFF (temporal differential privacy), an ensembling
framework suited for time-series-based HAR that incorporates
the temporality of the data to improve model training and
provides differentially private predictions with competitive
utility. The overview of TEMPDIFF is presented in Figure 1.
We assume the HAR data used to train the models are sensitive
and private. Firstly, the sensitive data is partitioned into
multiple unique subsets (similar to the subsampling strategy),
following which we further partition each subset based on
different time windows (Temporal Partitioning box in Figure
1). The Temporal Partitioning leads to multiple sub-partitions
from each subset with unique temporal properties. These sub-
partitions are used to train individual models. In contrast
to default ensembling-based methods, our approach allows
better exploration of the time-series data in each partition.

As a consequence, the models are appropriately trained. The
consensus from the trained models (on the classification task)
during aggregation helps obscure information about individual
data items and improve HAR classification.

To make a single private prediction in TEMPDIFF, individ-
ual models’ outcomes are aggregated and injected with Lapla-
cian noise [8]. However, using the models directly for making
a series of predictions incurs a privacy loss for every prediction
[7], [23]. To bypass this, we utilize the knowledge distillation
approach previously used in differential privacy literature [4],
[13], [20], [22], [23]. In this setup, we call the ensemble of
trained models as teacher models. To reduce the privacy loss,
the knowledge from the teacher ensembles is distilled into
a student model through a limited number of non-sensitive
queries using a public dataset. The public dataset (accessible
by any adversary) is used on the aggregate model (Figure
1) to extract noisy labels. The noisy labels and the public
data train the student model deployed for the downstream
task. Similar architecture (called PATE) for non-time-series
data was successfully demonstrated on non-temporal settings (
[22], [23]). However, in our work, the temporal partitioning al-
lows seamless integration of TEMPDIFF for time-series-based
HAR problems. On HAR workloads, TEMPDIFF provides
stronger privacy guarantees and better-distilled student model
classification performance than PATE. TEMPDIFF do not
have any assumptions in the type of model used for training.
In our work, we have used LSTM networks for modeling since
they are efficient for time-series data. To measure differential
privacy, we have used the adaptation Moment’s Accountant
Technique, introduced by Abadi et al. [1] and subsequently
used for an ensemble set up by Papernot et al. [22], [23]. It
allows us to calculate the privacy cost/budget ε (less is better
for privacy) of an individual query to the teacher models for an
input noise. The privacy cost can be composed over multiple



queries to formulate the system’s total cost as (ε,δ) differential
privacy. δ measures the probability that a differentially private
algorithm will fail to preserve privacy.

The main contributions of the paper are as follows:
• We propose TEMPDIFF, a framework that guarantees a

well-balanced tradeoff between privacy and utility (clas-
sification performance) for time-series-based HAR work-
loads. While some previous works connect differential
privacy and HAR, to the best of our knowledge, this is
the first work that approaches it with the privacy-utility
tradeoff on public HAR datasets.

• We improve upon the previous PATE baseline intro-
duced by Papernot et al. [22] for time-series-based HAR
datasets. In particular, our temporal partitioning strategy
allows the creation of unique and informative training
data from a particular subset of partitioned data. This
improves the teacher model training and hence the overall
classification.

• To show the method’s effectiveness, we extensively
evaluate the framework on two popular HAR datasets
(WISDM and PAMAP2). For both datasets, the proposed
framework outperforms the state-of-the-art (PATE [22])
in classification accuracy and privacy. On the WISDM
and PAMAP2 datasets, our framework achieved a (ε, δ)
privacy bound of (1.4, 10−5) and (8, 10−5) for achieving
a 0.82 and 0.79 accuracy respectively. On comparison,
the baseline PATE achieved (2, 10−5) for an accuracy of
0.74 on the WISDM dataset. For the PAMPA2 dataset,
PATE achieved (33, 10−5) for an accuracy of 0.66. We
also demonstrate the different tradeoffs between perfor-
mance, privacy, and the number of teacher models for
this framework.

The paper is organized as follows: The next section looks at
the related works, followed by methods. Then, we dive into
an extensive evaluation, concluding with conclusion and future
works.

II. RELATED WORKS

Human activity recognition (HAR) is a widely researched
problem with many practical applications. HAR algorithms
have been extensively deployed in different sectors, such as
sports [28], activity tracking [24], healthcare [2], etc. The
extraction of temporal sequences is popularly used in many
previous HAR works [11], [16], [27]. However, none of the
above works were designed to handle privacy. A more focused
effort towards incorporating privacy into HAR problems has
been undertaken recently. Sozinov et al. [30] developed a fed-
erated learning algorithm for HAR, where the data is private
to individual users. Kumari et al. [18] used homomorphic
encryption to guarantee the security and privacy of activity
tracker data for HAR workloads. However, these methods lack
the privacy accountability of differential privacy.

Recently differential privacy has been integrated into dif-
ferent types of HAR problems [10], [21], [33]. In [21], the
authors present a privacy-preserving model based on secure
multi-party computation that makes a fully homomorphic

encryption multi-key. While this work is theoretically proved
to be differentially private, it does not provide (ε, δ) results.
It makes it hard to understand the privacy-utility tradeoff, a
key feature of our framework. Zhang et al. [33] also provide
a theoretically differentially private algorithm for HAR from
channel state information of Wifi signals, but not the (ε, δ)
numbers.

Differential privacy is a mathematically rigorous stream of
privacy introduced by Dwork et al. [7]. Machine learning
and deep learning algorithms have also been adapted for
differential privacy and applied in different use cases. Shokri
et al. proposed a differentially private SGD applied to deep
learning-based methods [29]. In this method, they apply con-
trolled noise to gradient updates to obscure the internal model
parameters. Although this is still a popular method to achieve
differential privacy, the complexity of the method is relatively
high. Another differential privacy method, Private Aggregation
of Teacher Ensembles (PATE), was proposed by Papernot
et al. [22], [23]. They demonstrate a teacher-student-based
ensemble framework with a better privacy-utility tradeoff than
[29]. Our framework TEMPDIFF is inspired by the PATE
framework. However, the data-partitioning strategy in our
framework is specialized for time-series data and guarantees
a better privacy-utility tradeoff compared to PATE.

III. METHODS

A. Problem Setting

This paper proposes a practical setup for achieving differ-
ential privacy in Human Activity Recognition tasks. In the
setup, we assume that a significant portion of the user activity
data is sensitive, requiring robust protective measures. This
premise aligns with the reality that individuals generating data
entrust only the data-collecting organization with their privacy
assurance. Interestingly, unannotated and cheaply available
public data can also be utilized to ensure the privacy of the
proposed setup. We discuss how this is done in the ensuing
subsections.

We aim to protect user data via differential privacy while
ensuring utility simultaneously. In the process, we recognize
the potential for two types of adversaries: black box and white
box [12]. A black box adversary can access the deployed
model and make unlimited queries, whereas a white box
adversary can access the model’s internals. In a typical HAR
environment, we frequently encounter black box adversaries
attempting to infringe on privacy protections. In contrast, the
white box adversaries are less common because companies
seldom release their models. However, we can strengthen our
privacy proposition if we argue that TEMPDIFF is secure from
both adversaries.

B. TEMPDIFF

Our framework, TEMPDIFF, is proposed to enhance the
privacy/utility tradeoff in time-series-based Human Activity
Recognition (HAR) problems. Figure 1 depicts the framework.
TEMPDIFF operates in three distinct stages:
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(A) Temporal partitioning and teacher model training: Dur-
ing this stage, the input dataset is divided into M disjoint
subsets, each of which is then passed to the temporal
partitioning module. This further divides each subset into
N sub-partitions. An individual teacher model is trained
for each of these sub-partitions. This results in M x N
teacher models derived from M original partitions.

(B) Noisy aggregation: This stage focuses on making the
aggregated teacher model predictions differentially pri-
vate by injecting Laplacian noise [8]. In this stage, a
small unlabelled public HAR dataset is labeled using the
aggregated teacher models. Note that the labels obtained
through the above process are noisy.

(C) Student model training: The final stage involves training
a student model using the noisy class labels and the
public dataset. The model learns from the noisy class
labels produced in the previous stage, thus distilling
the knowledge of the teacher models while preserving
privacy.

To ensure privacy, the three stages of TEMPDIFF operate
in two parts, a private part and a public part (represented
by the vertical line in Figure 1). The teacher models of the
framework are trained with sensitive activity data originating
from the users. Hence, they are within the private part of the
framework to which an adversary has no access. The other part
is the public, where the knowledge from the teacher models is
distilled into a student model using a small public dataset.
This student model is deployed for inference during HAR
classification. Next, we discuss the three distinct stages of
TEMPDIFF and how they are integrated to ensure privacy
preservation.

1) Temporal partitioning and teacher model training: The
distinguishing feature of the TEMPDIFF framework, which
sets it apart from frameworks like PATE, is its temporal
partitioning method. This technique efficiently segments the
input time series, equipping each partition with a rich data set
to facilitate training a unique teacher model, thereby creating
a robust learner.

This approach promotes the growth of teacher models
without compromising each model’s optimal performance.
Conversely, using a traditional partitioning strategy to divide
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the entire dataset into M partitions can result in each model
only acquiring sub-optimal patterns as M increases. Given
the limited data points in each partition with a growing M , a
single teacher model might struggle to train adequately. This
could lead to disagreement among the teacher models on test
examples, negatively impacting classification performance and
privacy. However, we can address this sub-optimality in model
training by employing a more efficient partitioning strategy.
The core idea behind the partitioning strategy involves curating
different temporal representations from the time-series data. In
particular, we can extract different temporal sequences from
a raw time series using varying window sizes. The principle
is illustrated in Figure 2 where a time-series data curve is
denoted by a sequence of recordings a1, a2, . . . , a12. Utilizing
a window of size six, we extract the first six points and then
slide the window to obtain the subsequent six points (here, we
have non-overlapping windows). The sliding process creates
two temporal sequences that form a dataset. This dataset can
be utilized in the downstream pattern recognition task. By
altering the window size, we can slide different-sized windows
across the time series, extracting unique temporal sequences
and corresponding datasets. This method has successfully been
applied to HAR classification problems in previous state-of-
the-art [23], [27]. Incorporating this concept into the TEM-
PDIFF framework enables the generation of multiple distinct
datasets of temporal sequences from a single partition. Using
those datasets, more teacher models can be trained optimally,
improving the privacy and utility of the HAR task.

Figure 3 demonstrates the temporal partitioning method
where the strategy is applied. In the figure, the input time
series data is divided into M number of partitions, and
there are N window sizes w1, w2, . . . , wN . The temporal



After Noise Injection 

a. Overwhelming consensus b. Less consensus

After Noise Injection 

Labels not ipped Labels ipped

Fig. 4. Class votes after aggregating teacher models with a) overwhelming
consensus and b) lesser consensus.

partitioning module in the figure is shown on partition1.
Based on N , we further divide partition1 into unique
sub-partitions (partition11, . . . , partition1N in Figure 3).
The time-series data from partition1 is represented with
three distinct colors to represent these sub-partitions. Each
window size, w1, . . . , wN , is slid over each sub-partition
partition11, . . . , partition1N respectively. E.g. the sliding of
w1 on partition11 forms temporal sequences t11, t12, . . . etc.
Each of these slides forms a row of the Dataset1. Similarly,
Dataset2 to DatasetN is constructed with w2, . . . , wN . Thus,
we extract N datasets for every partition using the time
windows w1, w2, . . . , wN . These N datasets are used to train
N teacher models per partition, and a total MxN teacher
models are trained for M partitions. While our approach
also involves the division of the dataset into M x N disjoint
partitions, similar to the PATE methodology, our framework
significantly diverges due to the inclusion of temporality. This
unique incorporation allows for more robust representations
of teacher models, thereby offering an improvement over
the conventional PATE approach. The algorithm for temporal
partitioning is presented in Appendix C Algorithm 11.

2) Noisy Aggregation: To make the outcomes of the teacher
models differentially private, we must aggregate the outcomes
and add Laplacian noise [13]. While making predictions on a
dataset, the outputs of each of these teacher models participate
in voting. After they vote for a particular class, the total
number of votes per class is aggregated, and Laplacian noise
with scale 1

γ ( where γ is called the privacy parameter) is
added to the class votes. The equation below quantifies it,

output = argmax[vote+ Lap(
1

γ
)]

The vote (in the above equation) is the aggregate votes
assigned per class by all the teacher models. Using the Lapla-
cian mechanism on the aggregated votes makes the outcomes
(2γ, 0)-DP. Thus, lower values of γ should provide strong
privacy guarantees. However, lower γ also means high noise
to the votes that might hamper the classification result.

Securing a strong agreement among teacher models is
crucial in balancing the privacy-utility tradeoff. It permits
the addition of increased noise to the teacher votes without

1http://bit.ly/dsaa dphar

flipping the label. This concept is visually depicted in Figure 4,
showing the class votes after aggregating the teacher models.
The figure illustrates two scenarios—one where teacher model
consensus is overwhelmingly high and another where consen-
sus is comparatively lower. In the case of strong consensus,
introducing substantial noise alters class votes but does not
affect the overall outcome. However, adding heavy noise can
entirely reverse the outcome in the scenario with weaker
consensus. This shift can detrimentally affect downstream
classification performance. To prevent this in the second case,
we would need to limit the amount of noise added, compro-
mising privacy. Thus, achieving teacher consensus is vital for
balancing classification performance and privacy preservation.

3) Student Model Training: While deploying our teacher
models through aggregation may yield differentially private
predictions, each query to this model incurs a certain degree of
privacy loss. Consequently, after a specific number of queries,
the model loses its privacy protections, rendering user data
vulnerable to black-box adversaries. Therefore, it is critical to
constrain the overall privacy loss through queries.

Adopting a teacher-student architecture can effectively limit
privacy loss, allowing unlimited queries to a differentially
private system without privacy degradation. In this framework,
inaccessible private data is used to train multiple teacher
models (as depicted in the private box of Figure 1). The noisy
aggregation of these models guarantees privacy-preserving
predictions. However, rather than deploying the teachers di-
rectly, their knowledge is distilled into a student model. This
process involves using teacher models to infer noisy labels of
a small public dataset (as seen in the public part of Figure
1). Paired with the public data, these labels are then used
to train a student model, which is subsequently deployed to
predict human activities. Through this teacher-student setup,
the total privacy loss is upper bound by the loss incurred
through limited queries from the small public dataset (to the
aggregated teacher models).

C. Protection against adversaries

The teacher-student knowledge distillation offers protection
from both black-box and white-box adversaries. Through the
deployment of the student model, we upper bound the total pri-
vacy loss. Hence, no amount of queries a black box adversary
makes can incur additional privacy loss. Furthermore, a white-
box adversary with access to the student model’s internal
parameters can reverse engineer the noisy labels obtained from
the teacher models. Nonetheless, the original sensitive training
data remains secure from such adversarial attacks, as it is
not used to train the student model. If, instead, we deployed
the teacher model directly, we would have failed against both
adversaries.

D. Privacy Analysis

1) Differential Privacy: Differential privacy is an industry-
standard that can be used to analyze the privacy of algorithms
operating on datasets. The algorithms can also be machine
learning or deep learning algorithms. Formally differential

http://bit.ly/dsaa_dphar


privacy can be defined as follows: A randomized algorithm
(or mechanism) M with domain D and range R satisfies (ε,δ)
differential privacy if for any two adjacent inputs from two
databases (that differs by one record) x, y ∈ D and for any
subset of outputs S ∈ R it holds that:

P [M(x) ∈ S] ≤ eεP [M(y) ∈ S] + δ

Here δ is the probability of failure of differential privacy. The
definition of differential privacy above is adopted from Dwork
et al. [8]. Every query to a differentially private algorithm leaks
privacy and hence incurs a privacy loss. This privacy loss can
be composed of multiple such queries. Hence, the algorithm
is no longer differentially private after a bounded number of
queries.

Privacy loss and its random variable are two entities derived
as a difference of probability distribution from running x and
y on M . Privacy loss for an outcome o and input a is defined
as,

c(o;M,a, x, y) ≜ ln
P [M(a, x) = o]

P [M(a, y) = o]
(1)

It is not hard to see that the above definition of privacy loss
can be drawn from the definition of differential privacy. The
privacy loss random variable is defined as,

C(M,a, x, y) ≜ c(M(x);M,a, x, y) (2)

i.e., the random variable defined by evaluating privacy loss at
an outcome obtained from M(x). The privacy loss per query
can be aggregated over the total number of queries naively, i.e.,
simple summation, or through strong composition theorem [9].
The latter provides better bounds on the overall privacy of the
system and forms the basis of privacy accounting in many
differential privacy systems. However, it was shown by Abadi
et al. that the strong composition theorem can also provide
loose guarantees. To mitigate this, Abadi et al. introduced
a technique known as the Moment’s Accountant [1] that
keeps track of the privacy budget in different privacy analysis
frameworks, e.g., PATE [22]. In the following subsection, we
discuss the specifics of Moment’s Accountant Technique and
show how it can be used to calculate the privacy budget of
TEMPDIFF.

2) Privacy Accounting: The core of the Moment’s Accoun-
tant technique revolves around estimating the moments of the
privacy loss random variable denoted at the moment λ as,

αM (λ) ≜ max
a,x,y

αM (λ; a, x, y) (3)

where αM (λ; a, x, y) ≜ lnE[eλC(M,a,x,y)] is the moment
generating function of the privacy loss random variable,
i.e., C(M,a, x, y). The Moment’s Accountant keeps track of
αM (λ) for λ = 1, 2, . . . , k for some chosen k. These tracked
values are then used to calculate an upper bound on the total
privacy cost. The essence of Moment’s Accountant technique
lies in its insight that the moments of the privacy loss random
variable offer extensive information about the distribution of
privacy loss and the total privacy budget. Consequently, it
provides a much more accurate estimate of the total privacy

cost than the strong composition theorem. There are three steps
to obtain the privacy budget ε through Moment’s Accountant
method.

1) Calculate moment generating functions for mechanism M
and the moment of privacy loss using equation (3) for a
moment λ.

2) Compose the moments calculated using equation (3)
using the below equation, where a mechanism M com-
prises a series of adaptive mechanisms Mi where i =
1, 2, . . . , k.

αM (λ) =

k∑
i=1

αMi
(λ) (4)

3) Theorem: For any ε, a given mechanism M is (ε, δ)-DP
for,

δ = min
λ

exp (αM (λ)− λε) (5)

Solve the equation given by the theorem above for a
particular δ to obtain the ε either through a closed-
form solution or by searching over a moment space of
λ1, λ2, . . . , etc.

The above equations’ proofs are detailed in the paper by
Abadi et al. [1]. The privacy budget for differentially private
algorithms can be calculated using the above three steps.
The choice of the differentially private algorithm often of-
fers flexibility in calculating a closed-form solution of the
moments. In TEMPDIFF, we use the Laplacian mechanism
during aggregation like in PATE by Papernot et al. [22] for
differential privacy. Based on the findings by Dwork et al. [8],
the Laplacian mechanism with a noise scale of 1

γ is (2γ, 0)-DP.
The closed-form solution of the moment-generating function
for the Laplacian mechanism is given by,

α(λ; a, x, y) ≤ 2γ2λ(λ+ 1) (6)

When we apply the composition rule from equation (3) to
the function above and then calculate the final privacy budget
using equation (4), we can determine the data-independent
privacy budget for the Laplacian aggregation mechanism.
However, this data-independent analysis tends to provide a
loose bound of privacy loss as it does not consider the
agreement among models. Papernot et al. [22] introduced a
data-dependent privacy analysis to address the above issue.
Their approach assesses the degree of consensus amongst the
ensemble of teacher models. The resultant effect is a reduction
in the overall privacy cost when there is a high degree of
agreement amongst these models. In ensemble learning, it has
been noted that identifying the most similar data partitions
for a given test sample becomes challenging when there
is strong agreement between the teachers, even before the
noise injection. This contributes to the fact that the sensitivity
of a query decreases as the consensus among the teachers
strengthens. Consequently, privacy loss associated with such
outcomes is reduced. In this case, the moment of privacy loss,

α(λ; a, x, y) ≤ ln((1− q)(
1− q

1− e2γq
)λ + qe2γλ) (7)



, is satisfied by M a (2γ, 0)-DP mechanism , where q ≥
P [M(x) ̸= o∗] for an outcome o*. Also, l, γ ≥ 0 and
q ≤ e2γ−1

e4γ−1 . Furthermore, q can be upper bounded by

P [M(x) ̸= j∗] ≤
∑
j ̸=j∗

2 + γ(nj∗ − nj)

4exp(γ(nj∗ − nj))
(8)

, where n is the label vector score for database x with
nj∗ ≥ nj∀j. The proof of the theorems that derive equation
(7) and equation (8) is shown in [22]. Equations (7) and
equation(8) help us calculate the data-dependent moment of
privacy loss for given λ. The earlier steps involve calculating
the final privacy budget of TEMPDIFF. We initially com-
pute the smallest moments value between equations (7) and
equation (8), considering a few specific λ values. Then, we
apply equation (4) to compose these values and find αM (λ).
Using equation (5), we ultimately determine the (ε, δ) privacy
guarantee for the given αM (λ).

IV. EVALUATION

A. Datasets

For our experiments, we divide the dataset into three parts.
This division is not equivalent to the partitioning method
required for our algorithm but for training different parts of
the framework and testing it.

1) Training of teacher models This data resides in the private
part of the framework. It constitutes the maximum data
split of the dataset.

2) Training of student model This portion of the data is
the public data (accessible by any adversary) sent to the
aggregated teacher ensemble for labeling. Then, a student
model is trained on the public data and the aggregated
noisy labels.

3) Testing the student model This is the partition of the data
on which the student model is tested. The classification
metrics are reported on this portion of the data.

We have used two datasets for our experiments: WISDM [31]
and PAMAP2 [25]. The details of the dataset are presented in
Appendix A1.

B. Modelling architecture

LSTM-based neural network architectures have shown suc-
cessful results in HAR tasks for the chosen datasets [11], [27].
Hence, we decided to stick to LSTM-based neural networks
for modeling purposes. However, this framework is modeling
choice agnostic; hence, any model can be used. The best
hyperparameters for the models are provided in Appendix
B1 Table II, and the implementation details are provided
in Appendix D1. The time-series classification also induces
additional parameters for sequence length selection. This has
been extensively explored in previous works. Hence we use
window sizes from the previous literature [11], [14], [27].

C. Experimental Setup

Our experiment aims to demonstrate the tradeoff between
privacy and utility for TEMPDIFF and the vanilla version of
PATE framework [22] (which we refer to as Vanilla-PATE
in our experiments). We have different parameters that affect
the functioning of our framework. Apart from the modelling
parameters, we have three parameters that affect the privacy-
utility tradeoff, namely number of teacher models, window
sizes for parsing the time-series data, the privacy parameter,
γ.

Based on our resources, we train up to 100 models for both
TEMPDIFF and Vanilla-PATE for both datasets. In Vanilla-
PATE to train M models, we make M partitions. For TEM-
PDIFF, we select a N window-sizes and M partitions to train
M x N teacher models. The details of window-size selection
and estimation of the number of partitions for TEMPDIFF is
shown in Appendix B1.

The privacy parameter γ affects the amount of Laplacian
noise added to the outcome of the teacher models. We will
test TEMPDIFF and Vanilla-PATE for each teacher model
configuration using different values of privacy parameter γ
(0.01, 0.1, 0.3, and 0.5) and a fixed value of δ = 10−5. The
values of the γ, δ are adapted from the previous work [22].

D. Results

1) Amount of noise that can be injected during the aggrega-
tion process: In this analysis, we investigate the relationship
between noise injection and the utility of the teacher models
(see Figure 5). The x-axis represents γ, indicating the quantity
of noise introduced to ensure differentially private aggregation.
Given that the Laplacian mechanism renders each aggregation
(2γ, 0)-DP, a smaller γ value implies enhanced privacy per
label prediction. The y-axis represents the noisy aggregation
accuracy on the test-set labels. Usually, when we have fewer
teacher models, we observe that we trade off utility for strict
privacy levels. This is evident in both Vanilla-PATE and
TEMPDIFF across both datasets (as seen in Figure 5a and
Figure 5b) when the number of teachers is 10. Conversely,
more teacher models can effectively accommodate increased
noise injection, thus strengthening privacy. E.g., in Figure 5a,
when the number of teachers is 50 in TEMPDIFF, we get
good accuracy even when the γ is low. Similar observations
can be made for 100 teachers in the PMAPA2 dataset (Figure
5b).

Interestingly we observe that when the number of teachers
is 50, we get the best privacy-utility tradeoff in TEMPDIFF
for the WISDM dataset. On the other hand, we get the best
privacy-utility tradeoff for PAMAP2 using TEMPDIFF for 100
models (see Figure 5b). We suspect that the amount of data
per partition in the WISDM dataset is insufficient for training
100 models; hence, the agreement among the models is low.
This hampers the utility of the aggregated model.

Note that a gap exists between the aggregation accuracy
among TEMPDIFF and Vanilla-PATE. This reinforces our
argument that in TEMPDIFF, our temporal partitioning algo-
rithm helps achieve better utility due to optimal training of the



(a) WISDM Dataset

(b) PAMAP2 Dataset

Fig. 5. Accuracy of the aggregated test set labels versus the inverse
scale of the Laplacian noise γ grouped by the number of teachers (10, 30,
50, 100) for TEMPDIFF (solid lines) and Vanilla-PATE (dotted lines) for (a)
WISDM dataset (top) and (b) PAMAP2 dataset (bottom). γ varies inversely
to the injected noise and directly to the privacy per query.

TABLE I
PRIVACY-UTILITY TRADEOFF BETWEEN TEMPDIFF, Vanilla-PATE AND

NON-PRIVATE STATE-OF-THE-ART BASELINE. NOTE THAT WE DO NOT
HAVE ANY PRIVACY BUDGET (ε) FOR THE NON-PRIVATE BASELINE.

Number of queries REPRESENT THE NUMBER OF EXAMPLES USED TO
TRAIN THE PRIVATE MODELS. THE REPORTED ACCURACY IS ON THE

STUDENT TEST SET.

Dataset Method Number of queries Privacy Budget (ε) Accuracy Non-private accuracy

WISDM TEMPDIFF 1000 1.4 0.82 0.93 [27]Vanilla-PATE 2 0.74

PAMAP2 TEMPDIFF 1600 8 0.79 0.88 [27]Vanilla-PATE 33 0.66

teacher models. While, in Vanilla-PATE, most teacher models
do not agree on their outcomes before the noisy aggregation
(arising from sub-optimal training due to insufficient data).
Thus, the noise injection changes the outcome so that the noisy
label does not match the true label, lowering the accuracy.

2) Privacy Budget and accuracy of the deployed student
model: In this subsection, we want to analyze the privacy-
utility tradeoff grouped by the number of teacher models. In
this setting, we plot the overall privacy budget and student
model accuracy for each teacher model configuration for
different noise injections for both TEMPDIFF and Vanilla-

PATE. The privacy budget in this analysis is composed across
all queries, relying on the privacy analysis methodology we
described previously.

The results of this analysis are plotted in Figure 6 and Figure
7. For this setting, the best privacy utility tradeoff would be
represented by points with a low privacy budget and a high
student accuracy, i.e., the scatter points on each graph’s top
left corners. The best privacy-utility tradeoff is observed for
50 models and γ = 0.5 and γ = 0.3 in the WISDM dataset.
We have a comparable privacy budget for 100 models (Figure
6d), but the accuracy is lower. The highest noise injected with
γ = 0.01 for this dataset does not yield the best accuracies,
even with many models indicating that this noise is too high to
have any real utility. For the PAMAP2 dataset, good privacy-
utility tradeoffs are offered by 100 teacher models and γ values
of 0.1, 0.3, and 0.5. Here, γ = 0.01 also adds too much noise
to have any real utility.

3) Privacy-utility tradeoff comparison among baselines:
Table I compares the privacy-utility tradeoff for TEMPDIFF
and Vanilla-PATE for both datasets. Please note that the
reported accuracy of the private baselines is based on training
our student model on a limited number of examples and
their corresponding noisy labels (reported as Number of
queries in Table I). We also report the non-private accuracy
for each dataset from the state-of-the-art that uses the same
test partitions [27]. The non-private baseline is trained on the
fully available training data and evaluated on the same test
partitions. It is seen that TEMPDIFF has a lower privacy
budget compared to Vanilla-PATE for better accuracy in both
datasets. As expected, the non-private baseline has the best
classification accuracy.

4) Impact of knowledge distillation: One question for the
proposed setting may arise is whether using only available
public data to train the HAR model without TEMPDIFF’s
teacher-student setup would yield equivalent classification
performance. If so, it would imply that the privacy of the
sensitive data is not a concern, as they are not used in training.
In this case, simple training on the small publicly available
training data and the subsequent model deployment is enough.
Although we assume unannotated public data for a practical
setup, we eliminate that assumption for this analysis. Hence
in this experiment, we compare the performance of a model
trained only on the public data to that of TEMPDIFF, where
teachers’ knowledge is distilled into the student model. The
accuracy of the models on the student test set is used as a
metric for comparison. Note that TEMPDIFF includes the
noise addition step for differential privacy when it infers the
public dataset labels for training the student model. As shown
in Figure 8, TEMPDIFF outperforms the public-only model in
classification performance for both datasets. This suggests that
knowledge distillation is crucial for classification performance
(in TEMPDIFF), and equivalent results cannot be obtained by
training on a public dataset alone.



(a) Number of teachers = 10 (b) Number of teachers = 30 (c) Number of teachers = 50 (d) Number of teachers = 100

Fig. 6. Privacy budget (ε) versus student accuracy (on student model test set) for different γ values of Vanilla-PATE and TEMPDIFF in WISDM dataset
grouped by the number of used teacher models.

(a) Number of teachers = 10 (b) Number of teachers = 30 (c) Number of teachers = 50 (d) Number of teachers = 100

Fig. 7. Privacy budget (ε) versus student accuracy (on student model test set) for different γ values of Vanilla-PATE and TEMPDIFF in PAMAP2 dataset
grouped by the number of used teacher models.

Fig. 8. Effect of knowledge distillation: Accuracy on the student test set for
models trained with knowledge distillation (i.e., TEMPDIFF) versus models
trained only on the public data.

V. DISCUSSION AND FUTURE WORKS

Our experimental results establish that TEMPDIFF frame-
work has the best privacy budget and classification accuracy
compared to the state-of-the-art PATE baseline. Nevertheless,
we observe a gap in the classification performance compared
to the baseline. Although it is primarily due to the few
examples used to train the student model, the training could
be boosted using semi-supervised learning (similar to [22]). In
that context, the immediate future direction of this work would
be to incorporate self-supervised training in TEMPDIFF. Also,
we plan to investigate how generative models for student
model training as done in [22]. It could be an interesting

future direction for privacy-preserving HAR, as well as be-
cause generative models for time-series data need different
assumptions compared to vision datasets. While temporal
partitioning enhances privacy and accuracy, we also observe
that it occasionally leads to sub-optimal teacher models. Ex-
ploring strategies, such as confidence thresholds [23] or using
a mixture-of-experts approach [17], [26], could potentially
mitigate these sub-optimal scenarios. Another future direction
to explore is creating a collaborative network of privacy-
preserving algorithms for HAR tasks. Techniques like fed-
erated learning, encryption schemes, differential privacy, etc.,
could be integrated to form a more robust framework. It would
offer different users different privacy preferences in the same
framework, e.g., sensitive and non-sensitive users can solve
the same downstream task with different privacy preferences.

VI. CONCLUSION

Human activity recognition (HAR) data originates from a
wide variety of users. Data for some users might be sensitive.
Thus it is imperative that the privacy of users’ data needs to be
preserved. It is also important to ensure that the downstream
task of human activity recognition does not underperform
significantly when privacy is preserved. Hence to satisfy
both the performance and privacy requirements, this work
proposed a differential privacy framework called TEMPDIFF
that operates on time-series-based HAR workloads.

TEMPDIFF is a differentially private ensembling-based
framework that uses the temporality of the sensitive training



data through the temporal partitioning algorithm and effec-
tively trains an ensemble of teacher models privately. The
aggregated teacher model predictions are differentially private
but leak privacy for every prediction. Hence, the teacher
ensemble’s knowledge is distilled into a student model using
a small public dataset to bind the privacy loss privacy budget.
The student model is deployed in public to make differentially
private HAR predictions. The framework is evaluated on
two public HAR datasets WISDM and PAMAP2, where it
outperforms the state-of-the-art baseline in privacy budget
and classification performance. This work would open new
avenues of differential privacy research in the HAR and have
successful practical, real-world applications.
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