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Abstract—The Internet of Things (IoT) pervades our lives every day and has given end users the opportunity of accessing
personalized and advanced services based on the analysis of the sensed data. However, IoT services are also characterized by new
challenges related to security and privacy because end users often share sensitive data with different consumers without precise
knowledge of how they will be managed and used. To cope with these issues, we propose a blockchain-based privacy enforcement
framework where users can define how their data can be used and check if their will is respected without relying on a centralized
manager. The preliminary tests we performed, simulating different scenarios, show the feasibility of our approach.
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1 INTRODUCTION

THE rise and widespread of IoT devices have made it
possible to deliver personalized and advanced services

to end users. Just think about systems like Amazon Alexa or
Google Home, collecting a large amount of data and sending
them to the cloud for processing, or Samsung SmartThings,
where everyone can insert an application to interact with
IoT devices. However, all these IoT systems, which often do
not have a user interface, raise serious concerns about user
privacy management [1]. Another very privacy sensitive IoT
domain is the Medical Internet of Things (MIoT), which
makes it possible to improve the quality of patients’ care
significantly, thanks to remote patient monitoring (RPM) [2].
MIoT has recently raised its importance due to its crucial
role in managing the COVID-19 pandemic emergency. In-
deed, what has been learned about the pandemic till now is
that patients should be as much as possible treated at their
home since hospitals are often close to their full capacity.
However, safely keeping a COVID-19 patient at home re-
quires a constant monitoring of vital signs (e.g., oxygenation
level) and a constant adjustment of the treatment, and this
can be done through MIoT applications (e.g., [3]). However,
delivering such personalized healthcare services remotely
implies addressing many privacy concerns in that highly
sensitive data should be monitored and processed.

Typically, data consumers operate on the collected data
following privacy regulations, thus they accordingly have
to provide their privacy policies. Data owners can use these
privacy policies to take a privacy-aware decision on the
services’ usage. However, today, the most common privacy
strategy is the opt-out one, according to which data owners
only option is either to accept the privacy policy as is, or
not to use the service. This results in a lack of flexibility, as
the data owner is forced to accept the consumers’ policies
to access the service, especially in critical services, like the
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ones related to MIoT. To give more control to the data
owner, he/she should be able to state his/her preferences on
how his/her data have to be managed on consumers side.
For example, a data owner should state for which purpose
his/her data can be collected (such as geolocalization and
not analysis of habits) and/or for how long these data can
remain in consumers’ servers.

Therefore, it is essential to start developing devices
following the privacy by design/default model and, in
particular, being able to enforce user privacy preferences on
the delivered data [4]. This could be practically infeasible in
real-world scenarios because of the many devices already on
the market. Another critical concern to inject privacy-aware
capabilities in IoT devices is that they are often resource-
constrained devices, managing only elementary sensing
tasks (e.g., temperature sensing). Moreover, the possible
usage of IoT resource-constrained devices for privacy com-
pliance checks opens additional challenging issues. Above
all, since the IoT sector is rapidly developing commercial
solutions, subject to fewer tests and distributed on a large
scale to many users, the possibility that smart devices are
subject to security vulnerabilities is still considerable [5].
Thus, performing a compliance check on an IoT device,
under these conditions, means not always getting a reliable
result. On the other hand, in the context of IoT we have
to consider that, in accordance with the concept of edge
computing, data processing is increasingly moving towards
end-users. Therefore, privacy compliance check needs to
be moved to the same level as data processing [6]. We
believe that the rise of blockchain [7] as a new trusted and
distributed computation paradigm can help in addressing
these issues.

In this paper, we aim to benefit from blockchain to
perform privacy preferences’ compliance checks in a de-
centralized fashion on IoT devices, ensuring the correct-
ness of the process through smart contracts.1 This has the
advantage of not having to rely on a centralized trusted

1. Smart contracts are arbitrary owner-defined programs encoding
blockchain transactions validation processes.
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monitor to perform the check. Essentially, the compliance
check is executed via smart contracts and validated thanks
to a distributed consensus among the parties. Then, the
result is immutably stored on the blockchain. Data streams
generated by IoT devices are complemented with proper
metadata, storing information on device owner’s privacy
preferences, by exploiting the Manufacturer Usage Descrip-
tion2 (MUD) standard, which allows device manufacturers
to implement communication policies on end-devices. The
proposed system has been entirely developed and tested
with different scenarios to show its performance and feasi-
bility.

The remainder of this paper is organized as follows.
Section 2 provides some background information. In Section
3, we discuss the architecture of the proposed solution, and
then we deepen the two layers that compose it in Sections
4 and 5. We discuss the security properties in Section 6 and
the experimental evaluation in Section 7. Later, Section 8
presents the related work, whereas Section 9 sets out the
conclusions. The paper also contains Appendix A and B,
containing an in-depth study of Hyperledger Fabric’s chain-
codes and formal proof of theorems provided in Section 6,
respectively.

2 BACKGROUND

In what follows, we briefly introduce some key concepts
related to blockchain and the MUD standard that are needed
to understand our proposal, as well as the model we adopt
to specify privacy preferences.

2.1 Manufacturer Usage Description
The Manufacturer Usage Description (MUD) is an Internet
Engineering Task Force (IETF) standard, which allows end
devices to indicate to the network their communication
needs. Let us consider, for instance, a smart light bulb. In
general, this device does not require to interact with other
smart home devices (such as heaters or coffee machines).
The only connection needed is to the specific vendor ser-
vice for remote control. As such, by properly configuring
MUD, the light bulb owner can block any other unexpected
communication. This allows to reduce the attack surface
and block some malicious attempts to exploit the device
for other purposes. The general MUD schema is as follows.
The manufacturer defines, through a configuration file, the
access policies and the type of network functionalities re-
quired by the device. The configuration can express that
the light bulb has to communicate only on port 80 with
https protocol to a specific server. When a new device
joins a network, it communicates the URL where its MUD
configuration file can be retrieved. Then, the network ac-
cess device (NAD) retrieves the URL and sends it to the
MUD manager. This component, usually placed in the local
network, retrieves the MUD configuration file from the
MUD file manager (aka, the smart light bulb vendor) and
adapts the network setting such as to adhere to the MUD
configuration (e.g., smart light bulb can connect only with
its remote server). Although the standard currently covers
only aspects related to network access control, the goal is to

2. IETF-RFC8520 (MUD): https://tools.ietf.org/html/rfc8520

extend it to other fields, such as quality of service and data
privacy. Indeed, the standard includes a MUD Extension3

field designed at this purpose.

2.2 Blockchain

Blockchain is a distributed ledger where data are stored in
chained blocks publicly accessible to the network nodes [7].
Any activity or exchange of resources made by network
participants is stored in the blockchain as a transaction.
Transactions are grouped and inserted into a block. Each
block contains the hash of the previous block that creates
a link between the blocks, comparable to a chain, making
the blocks immutable. Before transactions are entered into
the blockchain, peers of the network must agree on their
validity. In distributed computing, this problem is known
as consensus4. According to the way the network nodes are
selected, a blockchain can be classified as permissionless
or permissioned. A permissionless blockchain permits to
anonymous nodes to participate in consensus. In contrast,
in a permissioned blockchain, only selected nodes are au-
thorized to join the network and participate in distributed
consensus. Regardless of the permission type, all the major
blockchain frameworks support smart contracts, enabling
the inclusion of other functionalities with respect to stan-
dard validation operations. A smart contract is a program
autonomously executed on the blockchain as part of a
transaction process validation. Our proposal is based on
Hyperledger Fabric5, a permissioned blockchain that can
manage large amounts of data with high performance. We
refer the interested readers to Appendix A for more details
about Fabric smart contracts.

2.3 Privacy model

In general, a privacy policy is specified by a consumer to
mainly state which personal data it collects from individ-
uals, for which purpose, for how long, and whether the
collected data will be released to third-parties. On the other
hand, data owners can specify their privacy preferences as
constraints on each single privacy policy component (e.g.,
purpose, retention time, third-party release). The literature
presents several models to represent user privacy prefer-
ences (see e.g., [9]). Although the proposed framework can
work with several privacy models, we choose to adopt
the model presented in [10], since this has been designed
for the IoT scenario. This is an expressive privacy model
that, in addition to standard privacy-related elements (e.g.,
purpose), also supports a set of features tailored to the IoT
domain to allow data owners to limit how and which data
can be derived during IoT analytic processes. Moreover, it
allows the automatic generation of privacy preferences for
newly derived data (e.g., information resulting from data
fusion). In this proposal, as a first step, we have consid-
ered a lighter version of [10], such to focus mainly on the
traditional privacy preference components (e.g., purpose,

3. Reporting MUD behavior to vendors - Available at https://tools.
ietf.org/html/draft-lear-opsawg-mud-reporter-00.

4. Proof-of-Work (PoW) or Proof-of-Stack (PoS) are example of BFT
protocols [8]

5. Available at https://www.hyperledger.org/
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Fig. 1: An example of purpose tree

retention time). We postpone as future work to extend the
framework to have full compliance with the model in [10].

According to [10], purposes are hierarchically organized
into a tree structure PT , as shown by the example in Figure
1. Such tree structure is used to limit the number of purposes
that need to be specified into a privacy preference. Indeed,
a preference with the purpose purp also implies the autho-
rization for all the purposes rooted at purp in PT . However,
the model also allows the specification of exceptions to this
propagation, as formalized by the following definition.
Definition 1 (Intended purpose [10]). An intended purpose

ip is a pair (Aip,Exc), where Aip (allowed intended
purposes) is a set of purposes belonging to a purpose
tree PT and Exc (exceptions) is a set of purposes that
descend from elements in Aip. ip authorizes the access
for all purposes that descend from6 the elements in Aip,
except for those that descend from any element in Exc.

Now, it is useful to define the set of purposes implied by
ip, denoted as

−→
ip , to check the privacy compliance. This is

the set of purp in Aip including all their child nodes in PT .
From this set, we remove all purp in Exc, plus their child
and parent nodes in PT .

Formally, let
−−→
Aip =

⋃
purp∈ip.Aip purp

↓7, where purp↓ is
the set composed of purp and all purposes descending from
purp in PT , and

−−→
Exc =

⋃
purp∈ip.Exc purp

l, where purpl,
the set composed of purp and all purposes descending and
ascending from purp in PT ,

−→
ip =

−−→
Aip−

−−→
Exc.

A privacy preference is in turn defined as follows.
Definition 2 (Privacy preference [10]). A privacy preference

is a tuple pp = 〈α, consumer, ip, rt, tpu〉, where α is an
attribute of a data stream generated by a smart object to
which the policy refers to, consumer specifies the set of
consumer’s identities to which pp applies, ip specifies
the intended purposes for which α can be collected
and used by any entity in consumer, rt specifies the
retention time, and tpu the third party usage.8

Example 1. Let us consider the scenario of a smart home,
equipped with MIoT devices for the remote monitor-
ing. The basic symptoms monitoring system is com-
posed by sensors for acquiring the respiration rate,
heart rate, temperature, and oxygen saturation [11].
The sensed data must reach the hospital, namely the
consumer, who takes care of the treatments. A pa-
tient can define a privacy preference pp for each data

6. Hereafter, we assume this relationship as reflexive, meaning that
every element descends from itself.

7. In what follows, we use the dot notation dataStructure.element
to indicate an element inside a tuple or a data structure.

8. For simplicity, in what follows, we assume that the retention time
is expressed in days and the third party usage tpu assumes one of two
values, namely shareable or unshareable.

stream generated by the monitoring system. Consider,
for instance, the heart rate monitoring. Suppose that
a user wants to share the sensed data only with
his/her hospital and only for administration and med-
ical purposes, except for research. Moreover, he/she
allows a retention time of 90 days and prohibits the
dissemination of such information to third parties.
To model these requirements, the user can specify
pp as follows: pp = 〈heart-rate, {hospital-company},
〈{admin,medical}, {research}〉, 90d, unshareable〉. By
considering the purpose tree in Figure 1, the set of
purposes authorized by pp is

−→
ip = {admin, profiling,

analysis, diagnosis, examination}.

A privacy policy can be modelled as a tuple 〈α, up, dataRet,
dataRel〉, where α denotes the attribute of a stream sensed
by an IoT device to which the policy applies, up is the
data usage purpose, whereas dataRet is the data retention
time, and dataRel is the third party usage. The privacy
compliance check compares a privacy preference with a
privacy policy, in order to verify whether the consumer’s
data usage complies with the data owner’s will.

3 ARCHITECTURE

In this section, we introduce the overall architecture of
the proposed blockchain-based privacy preferences enforce-
ment framework, shown in Figure 2. The key idea is that
data owners can leverage on blockchain for privacy com-
pliance before their data are sent to consumers. We assume
that both devices of data owner and consumers are regis-
tered on the blockchain. More precisely, we model a smart
environment at the data owner side a set of connected IoT
devices, hereafter IoT network, owned by a given user. The
IoT network can sense data from the user environment,
eventually locally elaborate them, and then send them to the
consumer servers. We further assume that the IoT network
is connected to consumer servers via a limited set of special
IoT devices, called gateways. In our proposed solution, the
gateways become the point of contact of an IoT environment
with the blockchain. This implies that they also act as
blockchain nodes, called IoT blockchain nodes, in addition
to performing their gateway’s functions. Data collected by
the gateways are complemented with metadata encoding
the owner’s privacy preferences. Consumers register their
privacy policies into the blockchain.

IoT manufacturers play a key role in the privacy en-
forcement process. They know their products in detail, for
example, which network ports they use, which endpoints
they connect to, which information they process and which
instead they send to consumers, etc. Manufacturers can
leverage the MUD standard to define the behavior of their
IoT devices at internetworking level (e.g., MAC address, IP
address, network port). With respect to data privacy, in our
framework, the manufacturer can insert a by default privacy
preference, called system-defined privacy preference pps,
using the custom field provided by MUD (see, Section 2.1).
This represents a privacy preference defined with the aim
of providing the first level of privacy, by design and by
default, to unaware users and therefore being compliant
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Fig. 2: Blockchain-based privacy enforcement workflow

with regulations, such as the GDPR9. In any case, the data
owner is free to add further restrictions to system-defined
privacy preferences, by specifying an owner-defined pri-
vacy preference ppo. In particular, the framework provides
the functionalities to merge the owner and system-defined
privacy preferences before performing a compliance check.
As it will be described in Section 4, this process is carried out
via a dedicated smart contract deployed in the blockchain.
Hereafter, when we talk about privacy preference, we will
refer to the one generated by the combination of the system-
defined and the owner-defined privacy preferences.

We also rely on smart contracts for the enforcement of
privacy preferences. In particular, the gateways analyze the
collected data, and when they find a new privacy preference
(e.g., a privacy preference that has not yet been evaluated),
they trigger the execution of a smart contract implementing
the privacy compliance check. This is designed to verify
whether the consumer policy satisfies the constraints speci-
fied by the data owner in his/her privacy preference. Finally,
we save on-chain the proof of the results returned by the
compliance check for auditing purposes.

In devising our framework, we have to consider that, by
design, information stored in the chain is distributed among
all blockchain nodes. Each node can see what is saved on-
chain as well as the smart contract contents. The privacy en-
forcement does not treat sensitive information, and therefore
any node can execute the smart contract without affecting
the data owner’s privacy. Moreover, the proposed archi-
tecture leverages on a permissioned blockchain that can be
configured such that only given stakeholders are authorized
to join the privacy compliance check.10 Once privacy en-
forcement has been executed (i.e., its smart contract has been
validated), we exploit the blockchain to enforce the data
release process. This implies to release owner’s data only
to consumers that satisfy his/her privacy preferences. Since
data could be sensitive, we cannot store them directly in the
blockchain. For this reason, we assume that once the data
have reached the gateway, they are kept in local temporary
storage, at the gateway side, waiting to be released to the
authorized consumers. To coordinate the data release, we
need a communication channel able to directly connect the

9. General Data Protection Regulation - EUR-Lex 32016R0679: https:
//eur-lex.europa.eu/eli/reg/2016/679/oj

10. Permissioned blockchains allow us to have an integrated identity
management system relying on public key infrastructure to identify
authorized stakeholders.

gateway holding the data to the blockchain node corre-
sponding to the authorized consumer. This channel must
be private, avoiding thus any other nodes in the blockchain
to access exchanged data. At this purpose, we exploit the
private data mechanism, natively supported by Hyperledger
Fabric. Thanks to this, Hyperledger Fabric can create peer-
to-peer links between two or more nodes to exchange off-
chain information, keeping on-chain an evidence of the data
exchange. In particular, all communications take place via
an encryption layer, established through the Transport Layer
Security (TLS). Therefore, when the data owner’s privacy
preferences have been verified, another smart contract takes
care of data release. It is executed directly by the gateway
hosting the data to be released. Its execution aims at moving
the data from the temporary local storage to the authorized
consumer via the P2P channel supported by Hyperledger
private data. The sensitive data are processed only within
the data owner’s IoT blockchain node (i.e., the gateway
acting as blockchain node). The remaining nodes can only
see the hash of this data, stored on the blockchain as a
result of the smart contract execution. To enforce the above-
mentioned steps (i.e., privacy enforcement and data release),
we leverage on a permissioned blockchain to create two
groups of blockchain nodes, namely the privacy enforce-
ment and the data release layer (see Figure 2) to which we
assign different privileges on transactions/smart contracts.
Nodes on the privacy enforcement layer implement the
privacy compliance check, whose outcome is used by nodes
on the data release layer. Both layers are discussed in detail
in Sections 4 and 5, respectively.

4 PRIVACY ENFORCEMENT LAYER

In this section, we illustrate the three phases carried on by
the privacy enforcement layer: privacy preference enforce-
ment, tuple grouping, and enforcement audit.

4.1 Privacy preference enforcement

As depicted in Figure 2, data sensed by IoT devices are sent
to gateways, that act as blockchain nodes (see step 1© in
Figure 2). IoT devices send their data inside a data tuple td,
formally defined as follows.

Definition 3 (Data tuple). Let Sd be a stream containing data
sensed by an IoT device. A data tuple td in Sd has the
following structure: 〈idS, sn, d, hash(d)〉, where d is the
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sensed data, hash(d) is the hash value of d, idS is the id
of Sd, whereas sn represents the sequence number of td
in Sd.

We use hashes to let consumers check that the received
data are exactly those sent by IoT devices and have not
been manipulated or corrupted (see Section 4.3). To avoid
further overload of the blockchain, the hash values are
directly computed by IoT devices. For instance, the tuple
td = 〈stream01, 32, “heart-rate : 60”, “de6960c7”〉 can be
used to encode heart rate information of a patient equipped
with a wearable device to sense heartbeats. Before sending
their data, data owners must register their data streams
on gateways. Consumers can then subscribe to registered
data streams. This subscription is subject to data owner
acceptance. Once the data owner accepts a new subscribed
consumer, he/she communicates a vector of subscribed
consumers’ consumerVector11 to the gateway (see step a©
in Figure 2). The vector is formed by consumer identifiers
idC and wrapped into a tuple tcv : 〈idS, consumerVector〉,
where idS is the target stream identifier. On the other hand,
consumers register their privacy policies in the blockchain
(see step b© in Figure 2). A consumer’s gateway sends to
the blockchain the privacy policy p related to a stream idS
through a privacy policy tuple tp with the following struc-
ture: 〈idS, idC, p〉, where idC is the consumer identifier,
idS is the data stream identifier, whereas p denotes a pri-
vacy policy specified as explained in Section 2.3. When the
blockchain receives tp, it executes a tailored smart contract
to store the tuple with the identifier idTp and to create an
association between the consumer idC and the stream idS.

We recall that, to make the task of privacy preferences
specification easier, we assume that IoT manufacturers cre-
ate system-defined privacy preferences, with the aim to
also protect those data owners with little awareness of
the privacy risks related to data disclosure. Such prefer-
ence is stored into the MUD extension field. Moreover,
the preference is also stored in the blockchain for future
audits (e.g., in case the MUD file is no longer available on
the manufacturer server). A skilled data owner can spec-
ify his/her own privacy preferences, called owner-defined
privacy preferences. An owner-defined privacy preference
complements the system-defined privacy preference, mak-
ing it more restrictive. The gateway, upon receiving the data
owner’s privacy preference (see step a© in Figure 2) and
catching the MUD URL coming from the corresponding IoT
device, sends this information to blockchain injecting into
the corresponding stream a privacy preference tuple tpp,
formally defined as follows.

Definition 4 (Privacy preference tuple). Let Sd be a stream
containing data sensed by a smart device. A privacy
preference tuple tpp in Sd has the following structure:
〈idS, sn,mudUrl, ppo〉, where idS is the id of Sd, sn
represents the sequence number of tpp in Sd, mudUrl is
the URL pointing to the manufacturer’s MUD file of the
corresponding IoT device, and ppo is the owner-defined
privacy preference, specified according to the model in
Section 2.3.

11. All vectors are denoted in lowercase bold.

In case of legacy devices, which are not compatible with
the MUD standard, the mudUrl field will be left blank. An
empty ppo field means that the data owner has not specified
his/her own privacy preference. When both the ppo and
mudUrl fields are empty, it is equivalent to not execute any
privacy enforcement.

The privacy enforcement smart contract (see Pseudocode
112) includes the submitPrivacyPreference() function that gen-
erates a unique pp starting from the input privacy pref-
erences provided in tpp. It is started when the blockchain
receives a new tpp. As first step, it checks that the sequence
number is as expected, to avoid inconsistencies and conflicts
of privacy preference (see, Line 6). When the tuple tpp
contains only the data owner-defined privacy preference,
that will become the actual pp. The same holds if only a
system-defined preference is contained into the tuple. When
the privacy preference tuple contains both a system and
an owner-defined preference, the resulting pp is obtained
by combining these two in such a way that they must
be both satisfied in order to deliver the protected data
to the requesting consumers. Preferences combination is
implemented by the ppCombine() function (Pseudocode 1).
The generic ”join ∗ ∗ ∗ (pps.∗, ppo.∗)” function combines
each element of the two privacy preferences. At the end,
the function returns the resulting pp, which is saved in
the blockchain as a parameter of tpp. In addition, we also
append the system-defined privacy preference pps retrieved
from the manufacturer server. The execution of the privacy
enforcement smart contract is then validated by the network
via distributed consensus, ensuring thus the correct compli-
ance check.
Example 2. Returning to Example 1, a privacy

preference tuple for the heart rate can be: tpp =
〈stream01, 24, “manufacturerUrl”, dataOwnerPP 〉,
where ”stream01” is the stream id, ”24” is the tuple
id, ”manufacturerUrl” is the url of the MUD file
containing pps, ”dataOwnerPP” is the owner-defined
privacy preference, which we assume being the pp of
Example 1, that is:

〈
heart-rate, {hospital-company},

〈{admin, diagnosis}, ∅〉, 90d, unshareable〉. In this
example the data owner grants access to his/her
sensitive data. The system-defined privacy preference
acts by excluding any purpose which is not
GDPR compliant (e.g., to ensure that consumers
cannot speculate on medical data). This can be
encoded by the following system-defined privacy
preference: pps = 〈∅, ∅, 〈∅, {marketing}〉, ∅, ∅〉.
The combination of the two privacy preferences
that will be saved on blockchain is: pp =
〈heart-rate, {hospital-company}, 〈{admin, diagnosis},
{marketing}〉, 90d, unshareable〉.

When the blockchain receives a new tpp, the contained pri-
vacy preference pp takes effect substituting the previous one.
This implies to run the privacy compliance check of the new
preference against privacy policies of consumers subscribed
to the related stream (same idS). This check is performed
by the privacyComplianceChecker() function (Pseudocode 1).
The function is triggered by the submitPrivacyPreference()

12. Functions ”getBc ∗ ∗ ∗ (k)”/”putBc ∗ ∗ ∗ (k, v)” read/write the
data with key k and value v on the blockchain, respectively.
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function each time a new tpp is received. After obtaining
the privacy preference tuple and the consumer vector, priva-
cyComplianceChecker() verifies which of the consumers have
the authorization to receive the data in the stream to which
tpp refers to. This is done by leveraging on the verifyAuth()
function (Pseudocode 1). The purpose check (see, Line 8)
is satisfied if up specifies an allowed purpose, that is, a
purpose contained in

−→
ip (see, Section 2.3). Also, dataRet

must be less than or equal to rt (see, Line 11), whereas
dataRel must match tpu (see, Line 14). If all checks are satis-
fied, then the compliance check successes. The result is then
stored in the blockchain. More precisely, since the function is
executed for each subscribed consumer, all returned results
are collected into a unique vector:

check = (check1, check2, ..., checkn)

s.t. checkj = (idC, idTp, grant)
(1)

where n is the number of subscribed consumers, grant is the
value returned by verifyAuth() for consumer whose id is
idC , and idTp is the privacy policy identifier. As introduced
in Section 4.1, when tp is submitted to the blockchain, an
identifier idTp is generated, referenced on-chain with the
keys idC and idS. idTp is retrieved from blockchain via the
getBcIdTpByIdSIdC() function (see, Line 19). Finally, the
check vector is saved in the blockchain with idCheck as key.

4.2 Tuple grouping
In a realistic IoT scenario often many devices in the IoT
network push their tuples to the gateway simultaneously.
However, blockchain might not be able to manage a high
incoming rate of tuples, such as gateways might produce.
Therefore, the blockchain can become a bottleneck. To avoid
this, we group data tuples to which the same privacy
preference applies. This selection has the purpose to lighten
the workload on the smart contract and therefore on the
blockchain. By grouping tuples with similar privacy protec-
tion requirements, the blockchain can process them in one
round. Indeed, when the smart contract receives a group
of tuples that share the same idS and pp, it can perform
the compliance check only once and apply it to the whole
group. To correctly create the tuple selection σ, we must take
into account the validity range of pp for a given data stream
Sd, that is, the set of tuples to which it applies. The range
of tuples to which pp applies begins with the privacy pref-
erence tuple referring to pp and ends with the subsequent
privacy preference tuple. We call this data stream subset
privacy preference scope, denoted as Spp. Another important
dimension is the time interval on which the selection acts.
Considering different streams as input to the gateway, the
selection must wait for the collection of a certain number
of data tuples. We can limit the maximum waiting time
and the maximum number of tuples per selection to be
sent to the blockchain. By tuning these two parameters, we
create queues within the gateway with different priorities
and capacities. For example, in the case of streams that
need low latency and small data size, such as near real-
time, we can select a low accumulation time and a high
number of tuples in a single selection. Otherwise, if the flow
contains big size data that can be delayed, such as batch
processing, the queue may have a higher grouping time than

in the previous case. We have considered these two extreme
scenarios, but the platform is also capable of handling mixed
scenarios, by using the same approach. Obviously, different
strategies must be adopted to tune the window and balance
the latency according to the considered application scenario.
In any case, σ contains a certain number of data tuples
collected in a time interval, that respects the constraint of
having the same stream identifier and the same privacy
preference applied to all its tuples. Each tuple in the se-
lection has its own sequence number, so we can define
an interval as two integers [n,m], where n and m are the
sequence numbers of the first and the last tuple, respectively.
σ[n,m](Sd) represents a selection of tuples td ∈ Sd such that
td belongs to Spp and n ≤ td.sn ≤ m.

For the obvious limitations of the blockchain, we
must include further optimizations with respect to the
use of data hashes contained in each data tuple (see,
Def. 3). Therefore, we exploit a hash function to com-
pute and store only a digest, representative of a whole
tuple selection. Let us consider a hash function hash()
and n messages m1,m2, ...,mn, the digest is calculated
as d = hash(hash(m1)||hash(m2)||...||hash(mn)), where
|| denotes the concatenation operation. Keeping only one
digest in the blockchain allows us to combine in a single
hash all the tuples over which the control has been made,
with a considerable saving of space. More precisely, from a
selection σ[n,m](Sd) we obtain the set of tuples td composing
it (see, Figure 3). For each td, we select only the field
hash(d). Finally, we compute the cascading hash on the
resulting set of hash values.

After that, for each td in σ[n,m](Sd), we collect d into a
data vector d. The data vector is saved on temporary local
storage, 2’© in Figure 2, and it is not shared with anyone, but
it is only accessible locally by the data owner.

Leaving aside d (it will be discussed in Sec. 5), we
represent the tuple selection σ[n,m](Sd) on the blockchain
with a small size tuple suitable for on-chain storage, called
chunk tuple tc, whose structure is:

〈idS, idTpp, [n,m], idCheck, digest(h)〉
s.t. h =

∏
hash(d)(σ[n,m])

(2)

where h is the projection on component hash(d) of se-
lection σ[n,m], idS is the identifier of the stream to which the
selection refers to, idTpp is the selection’s privacy preference
identifier, [n,m] is the interval of data tuples’ sequence
numbers belonging to the selection, idCheck is the privacy
compliance check identifier, whereas digest() is the digest
built on h. tc is created by function dataTupleChunk() of
the privacy enforcement smart contract (see, Pseudocode 1
and step 2© in Figure 2). It receives σ as input, from which
it derives idS, h, and [n,m]. The two identifiers idTpp and
idCheck are obtained from blockchain with key idS. Next,
we calculate the digest (see, Line 33) and then store tc,
with its identifier idTc, on the blockchain. Figure 3 shows
a graphic representation of the tuple selection process. At
the top, each square represents a tuple, those with the bold
border are privacy preference tuples, while the others are
data tuples. The colors green, red, and yellow represent
tuples from three different data streams. Focusing on the
green stream, “idS: 1”, we can see two privacy preference
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Fig. 3: Tuple selection process inside the gateway

scopes Spp, the first with a selection, and the second with
two selections. For instance, the selection σ[7,10](Sd) consists
of the tuples from sequence number 7 to 10 in the stream
idS : 1 belonging to the privacy preference scope Spp2.

4.3 Privacy preference enforcement audit
Our framework allows data owners to check whether the
compliance of their privacy preferences with the consumers’
privacy policies has been correctly carried on for a certain
data tuple. Regarding consumers, they can check the out-
come of their privacy policy enforcement and whether the
received data set is complete.

Mainly, the data owner has the right to verify the
enforcement of his/her privacy preferences over his/her
data and to which consumers they have been released. To
proceed with the audit verification of a specific data tuple td,
the data owner needs to determine the chunk tuple tc where
the outcome of the compliance check for td is kept. Knowing
idS, he/she can go back to tc thanks to the sn component of
td. Once the data owner gets tc from the blockchain, he/she
can carry out the checks itself. First, the data owner can
verify that the tuples contained in the range [n,m] have
been enforced with the privacy preference tpp, retrieved
from idTpp. Another check is on the vector check, kept
with idCheck on blockchain. Specifically, each consumer
has his/her own check inside check vector. By doing so, the
data owner gets the list of consumers enabled to receive the
data. A third more in-depth check can be carried out on each
individual consumer, to re-evaluate privacy enforcement on
tpp and tp. In this case, the data owner must carry out the
check on his/her own and verify that the outcome matches
the one stored in the grant component of the element
referring to that consumer in the check vector.

On the other hand, the consumer receives tc and d. From
tc he/she can see the outcome of the privacy enforcement
carried on his/her privacy policy and, if he/she wants,
recalculate it with tpp and tp for double-check, like the data
owner. Instead, to verify the completeness of the received
data set, he/she can calculate the entire digest of d and
compare it with the one contained tc. If they match, then
the consumer has received all the data.

5 DATA RELEASE LAYER

The data release layer transfers an authorized data item d
from the data owner IoT blockchain node to a consumer IoT
blockchain node. Since d may contain sensitive information,
they cannot be exchanged on-chain. For this reason, we

Pseudocode 1: Privacy enforcement smart contract
1 Let:
2 tpp be the privacy preference tuple;
3 idTpp be the privacy preference tuple identifier;
4 σ be the tuple selection ;
5 Function submitPrivacyPreference (tpp)
6 checkSequenceNumber(tpp);
7 mudFile = downloadMudFile(tpp.mudUrl);
8 tpp.pps = extractPps(mudFile);
9 tpp.pp = ppCombine(tpp.pps, tpp.ppo);

10 new idTpp;
11 putBcTpp(idTpp, tpp);
12 privacyComplianceChecker(idTpp);
13 end
14 Function privacyComplianceChecker (idTpp)
15 tpp = getBcTpp(idTpp);
16 consumerV ector = getBcConsumerVector(tpp.idS);
17 check = new vector;
18 forall idC in consumerV ector do
19 idTp = getBcIdTpByIdSIdC(tpp.idS,idC);
20 tp = getBcTp(idTp);
21 grant = verifyAuth(tpp.pp, tp.p);
22 check.add(idC,idTp,grant);
23 end
24 new idCheck;
25 putBcCheck(idCheck,check);
26 end
27 Function dataTupleChunk (σ)
28 idS = getIdS(σ);
29 idTpp = getBcIdTppByIdS(idS);
30 h = getH(σ);
31 [n,m] = getInterval(σ);
32 idCheck = getBcIdCheckByIdS(idS);
33 digest = calculateDigest(h);
34 tc = (idS, idTpp, [n,m], idCheck, digest);
35 new idTc;
36 putBcTc(idTc, tc);
37 end
38 Function ppCombine (pps,ppo)
39 new pp;
40 pp.ip = joinIp(pps.ip,ppo.ip);
41 pp.rt = joinRt(pps.rt,ppo.rt);
42 pp.tpu = joinTpu(pps.tpu,ppo.tpu);
43 return pp;
44 end

exploit a peer-to-peer (P2P) off-chain private channel to
exchange data between the involved parties. For this pur-
pose, in this paper, we leverage on private data provided by
Hyperledger Fabric. Private data allows the establishment
of a P2P link between two or more nodes for data sharing,
saving on the blockchain a trace of the exchange.

More precisely, the data release layer operates on the
output of the privacy enforcement layer (see, Section 4), that
is: (1) the data d to be released to the intended consumers,
which are saved on local temporary storage as data vector
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Pseudocode 2: Verify authorization function
1 Let:
2 pp be the data owner’s privacy preference;
3 p be the consumer’s privacy policy ;
4 Function verifyAuth (pp,p)
5 Let ipF lag be a boolean variable, initialized as False;
6 Let rtF lag be a boolean variable, initialized as False;
7 Let tpuF lag be a boolean variable, initialized as False;
8 if (p.up ∈ pp.−→ip) then
9 ipF lag=True;

10 end
11 if (p.dataRet ≤ pp.rt) then
12 rtF lag=True;
13 end
14 if (p.dataRel = pp.tpu) then
15 tpuF lag=True;
16 end
17 if (ipF lag=True & rtF lag=True & tpuF lag=True) then
18 return True;
19 else
20 return False;
21 end

d, and (2) the chunk tuple tc, stored on the blockchain.
The purpose is to send d to the allowed consumers. The
data release is managed by a smart contract, described
in Pseudocode 3, and executed by the data owner IoT
blockchain node. The data release smart contract leverages
the dataRelease() function, which sends data to consumers
according to the compliance check results. The function
receives as input parameters (1) and (2) and verifies that
each consumer has received a positive result from the com-
pliance check performed by privacyComplianceChecker() (see,
Pseudocode 1), otherwise data are not released.

First, let us get tc by idTc (see, Line 5, Pseudocode 3),
where is contained idCheck (it represents a pointer within
the blockchain to the privacy enforcement check). We use
idCheck to derive the vector check from blockchain (see,
Line 6, Pseudocode 3). Inside this vector, we have the out-
come of privacy enforcement per each consumer. When the
smart contract finds a consumer, who is entitled to receive
the data, it gets the private channel identifier and sends
d on the P2P off-chain channel through a tuple (idTc,d).
The function putPrivateData() (see, Line 10 of Pseudocode
3) takes care of sending (idTc,d) to the consumer on an
Hyperledger Fabric private channel. Since in a blockchain

Pseudocode 3: Data release smart contract
1 Let:
2 idTc be the chuck tuple identifier;
3 d be the data vector;
4 Function dataRelease (idTc,d)
5 tc = getBcTc(idTc);
6 check = getBcCheckVector(tc.idCheck);
7 forall check in check do
8 if check.grant is True then
9 idChannel = getChannel(check.idC);

10 putPrivateData(idChannel, idTc, d);
11 end
12 end
13 end

network any node can be vulnerable and attacked, data
contained in d are encrypted and signed by the IoT devices
that generate them. Hyperledger Fabric provides a Public
Key Infrastructure (PKI) in which each node has its own

identity with a public and a private key (wallet). Taking
advantage of this feature, an IoT device can send through
the P2P off-chain channel a symmetric key to a consumer,
encrypting it with the consumer’s public key. The consumer
uses the Hyperledger Fabric getPrivateData() function in
order to obtain his/her data. This function requires the
channel identifier idChannel and the chunk tuple identifier
idTc as input parameters. The consumer knows the channel
identifier idChannel as this is released at subscription time,
the chunk tuple identifier idTc because the P2P off-chain
channel has a built-in push notification mechanism that
alerts the consumer when a new chunk tuple is available.
After that, d is sent to the consumer ( 7© in Figure 2).

6 SECURITY DISCUSSION

In this section, we discuss the security guarantees provided
by each layer of our framework, as well as of the underlying
infrastructure. In general, we assume that each component
of our infrastructure (e.g., blockchain, gateways, and IoT
devices) is untrusted and controlled by different entities that
might have conflicting interests.

Infrastructure: To ensure secure communication
among IoT devices, gateways, and blockchain peers, we
leverage the authentication and encryption mechanism fea-
tures provided by Hyperledger Fabric via Membership Ser-
vice Provider (MSP)13, which is based on TLS protocol and
X.509 certificates.

A further key component of the proposed infrastructure
is the blockchain, which might be subject to vulnerabilities
and threats, e.g., double spending, smart contract coding
flaws, Sybil attack, etc. In our framework, to cope with
these threats we adopted the countermeasures designed
for Hyperledger described in [12]. Moreover, we rely on a
permissioned blockchain and, as such, blockchain’s clients
and peers are known, having they own identities. There-
fore, they are accountable for their behaviors, and any
perpetrator of abuse or malicious behavior is easily iden-
tifiable and can be banned from the network. We also use
the raft consensus algorithm which is considered safe and
preventing double spending by design [12]. Although the
blockchain allows us to run a reliable privacy enforcement
even in an untrusted environment, we have to consider
smart contracts’ security. Smart contracts are prone to var-
ious programming errors that can lead to bugs and/or
vulnerabilities. They can be exploited to manipulate the
workflow of the smart contract and obtain different results
from those expected. To cope with this issue, we have imple-
mented a set of strategies, such as imposing maximum time
for smart contract execution, setting root privileges only
where necessary, enabling access control lists (ACLs) for
channel access, setting policies for chaincode lifecycle and
endorsement, testing input parameters against parameter
tampering, testing the chaincodes with static analysis tools
(reviveˆCC14 and gosec15).

13. Membership Service Provider - Available at https:
//hyperledger-fabric.readthedocs.io/en/latest/msp.html

14. Available at https://github.com/sivachokkapu/revive-cc
15. Available at https://github.com/securego/gosec
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Privacy enforcement layer: Attacks on the correct func-
tioning of the privacy enforcement layer can be done by
malicious IoT devices or gateways that try modifying the
preference/policy tuples. Our scenario foresees different
IoT devices each with its own tailored privacy preference,
specifically the system-defined privacy preference pps (cfr.
Section 3). For the sake of scalability, in the default setting of
our framework IoT devices generate and sign privacy pref-
erence tuples. So it is possible that a compromised IoT de-
vice, generates a fake privacy preferences, in conflicts with
the real owner preferences. However, the data owner is able
to verify on the blockchain the stored privacy preference,
sent by the IoT device, and detect the attack. This solution
could fit many IoT deployment and achieve a good com-
promise between security and scalability. However, to cope
with more risky scenarios (e.g., characterized by resource-
constrained IoT devices that can be easily compromised),
the proposed infrastructure supports the data owner to di-
rectly submit in the blockchain his/her privacy preferences.
This would exclude any tampering by compromised IoT
devices.

Another security issue is due to possible DoS attack,
where IoT devices try to send an excessive number of pri-
vacy preference tuples to continuously trigger the privacy
enforcement. We consider that the gateway is equipped with
standard countermeasures against DoS (queuing systems,
detection, and monitoring system, IoT devices’ ban, log and
notification, etc.), so it can detect and mitigate by avoiding
sending the tuples to the blockchain. In the case that also the
gateway participates in the attack, the blockchain adminis-
trators can monitor the number of transactions submitted,
set rate limiter, identify, and isolate malicious IoT devices or
gateway.

Besides participating in DoS attacks, a malicious gate-
way could modify, duplicate, or omit the privacy preference
tuples. We recall that IoT devices sign these, thus any tamper
by the gateway is easily identifiable by the blockchain due to
signature invalidation. The privacy preference tuples dupli-
cations can be identified thanks to the sequence number that
cannot be altered, since it’s included in the signature. Also,
the privacy preference tuples omission can be detected by
proposed smart contracts (see, Line 6, Pseudocode 1), which
know the expected tuple sequence number and raise an alert
in case of wrong sequence number. Finally, the correctness
of the privacy enforcement process relies on the correctness
of the proposed smart contracts. This has been proven by
Theorem 1 available in Appendix B.

Data release layer: A possible security issue in this
layer is represented by data tuples sent to unauthorized
entity (e.g., consumers, peers). This could happen due to (1)
untrusted gateway that sends the collected data to unautho-
rized entity or (2) an attacker who directly eavesdrops the
communication. We have to recall that data sensed by IoT
devices are encrypted with their private keys before their
release (cfr. Section 5). Thus, even if data are shared with
unauthorized entities by an untrusted gateway or eaves-
dropped by attacker, these are not accessible. Furthermore,
the risk of eavesdropping is limited by the TLS protocol
adopted by Hyperledger Fabric. A data leakage could also
occur at the IoT device, as a malicious IoT device could
send the sensed data to unauthorized entity. To cope with

this possibility, we leverage on MUD (cfr. Section 2.1), by
which we can limit the IoT device communication only to
the gateway and make the IoT device t not directly reachable
remotely. Further security problems are given by the omis-
sion and modification of data tuples by the gateway. To cope
with this threat, we adopt the same countermeasures seen
in the previous section, e.g., exploiting auditing, signature,
and sequence numbers. Finally, the logical correctness of the
data release smart contract has been proven by Theorem 2,
available in Appendix B.

7 EVALUATION

In this section, we present the evaluation of our solution
with a realistic load. At this purpose, we run a set of
experiments aiming at measuring: (1) the data throughput,
that is, the amount of data that the blockchain can manage in
a time unit; (2) the space overhead implied by the additional
information (metadata) that our solution requires to insert
in the original IoT device streams; and (3) the time spent in
privacy preference enforcement and data release. In running
the experiments, we considered two main dimensions that
impact performance. The first is the number of owner’s IoT
devices registered in the blockchain, that is, the number of
data streams to be processed. Indeed, each distinct inbound
data stream requires a distinct aggregation process in order
to create tc. Moreover, since the compliance checks have
to be performed against each registered privacy policy, the
second dimension is the number of registered consumers. In
our state of the art analysis (cfr. Section 8) we did not find
any work directly comparable to our proposal, as they differ
in type of infrastructure, scenario, blockchain, and adopted
privacy model.

7.1 Test environment

We simulated a smart home scenario exploiting both Rasp-
berry Pi 316 devices and virtual machines17. The adopted
smart home scenario consists of four different entities: (1)
a gateway collecting data owner streams; (2) blockchain
peers supporting the dialogue with consumers (i.e., policy
registration, stream subscription); (3) an IoT device man-
ufacturer, and (4) a third-party entity. This latter represents
those entities that are not directly involved in the data gener-
ation/release but whose peers participate in the blockchain
consensus. Moreover, we assume that each entity joins the
blockchain with two peers and a certificate authority18. For
data owners, consumers, and IoT manufacturers, we have
implemented a peer on a Raspberry Pi 3 device, whereas
the other peers and the certificate authority run virtualized
on the server. Instead, peers and certificate authorities of the
third party entities run only on the server.

In the experiments, we varied the number of data owners
and consumers by changing the load on the corresponding
blockchain peers. For the implementation, we used the latest
stable Hyperledger Fabric release, that is, 1.4 version. We

16. Model B+: Cortex-A53 (ARMv8) @ 1.4GHz, 1GB LPDDR2.
17. Running on server Intel Core i7-6700 @ 3.4Ghz, 16GB DDR4
18. In Hyperledger Fabric, each entity must have its own certificate

authority for the generation of the cryptographic information (PKI keys,
certificates, etc.).
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used the Raft consensus with 5 orderers, running on the
server. To implement a blockchain peer on Raspberry Pi 3,
we installed Ubuntu 18.04.2 4.15.0-1033-raspi2 AArch64 OS
and compiled Hyperledger Fabric for arm64 platform. For
the virtual peers, we used Ubuntu server 18.04 with peers
virtualized on a switched Gigabit LAN. The chaincode was
developed in Go19, whereas we used the Hyperledger Fabric
SDK for Node.js20 to interface peers with clients.

The experiments were conducted by exploiting the
CASAS project dataset21, which is widely used by the sci-
entific community. In particular, we used the ”Two-resident
apartment” dataset consisting of sensors’ data collected
from a house lived by two people. The dataset contains
data gathered from 108 different devices for several days.
For simplicity, we consider only 24 hours of a unique data
stream. This interval is representative as the other days’
pattern is similar due to daily activities’ cyclical nature.
To implement a more complex scenario, we duplicated this
stream to simulate the flow generated by different houses.
Each of them has a different data owner, with a different
privacy preference. We assumed a minimum of 10 streams.
At the beginning, for each stream, we assumed only one
consumer with a single privacy preference. Then, we in-
creased these numbers up to 100 subscribed consumers and
100 privacy preferences associated with each stream.

7.2 Performance results
In this section, we present the test results for throughput,
space, and time overhead. We assess the performance by
testing the scenario with different settings, by varying the
number of data owner streams and consumers from 10 to
100 (i.e., 10, 50, 100). We changed privacy preferences and
policies every 10 minutes to trigger the new compliance
check computation, stressing the system.

Throughput: Figure 4 shows the 24h throughput for
four settings, where s and c indicate the number of streams
and consumers, respectively (e.g., 10s10c stands for 10
streams and 10 consumers setting). We omitted the 50
streams and 50 consumers configuration for lack of space,
but they are taken into account in the following graphs.
The byteIn input throughput is the number of bytes in a
second, that the system through the IoT blockchain nodes
can accept. The byteOut output throughput is the number
of bytes in a second confirmed on the blockchain and that
have reached the consumer. byteOut and byteIn have times-
tamps associated with them, the difference between these
two timestamps represents the time interval during which
the system performs all needed operations: selection, aggre-
gation, privacy enforcement, data release, and blockchain
consensus on each data. This time is the platform trans-
action time. Focusing on the outgoing stream (byteOut),
we notice that the trend is jagged for a few consumers;
instead, it becomes flat and constant for a higher number
of consumers. This is because the system is not fully loaded
initially and thus follows the input trend and has high over-
head. When the incoming stream saturates the blockchain’s
speed of accepting transactions, the gateway’s queuing and

19. Available at https://golang.org/
20. Available at https://hyperledger.github.io/fabric-sdk-node/
21. Available at http://casas.wsu.edu/datasets/

selection mechanism temporarily store the packets, reducing
the outgoing overhead. Although there are higher peaks
with few consumers, the average throughput trend is higher
in the second case because the sending is continuous. The
maximum throughput, on configuration 100s100c, is around
9000 B/s. Certainly, this throughput is not comparable with
the classic IoT systems that achieve higher performance but
it is a first milestone in the use of the blockchain in this
sector. In fact, being able to successfully manage 100 smart
environments, creating about 10,000 data flows (assuming
that each IoT device had its own consumer and therefore
with a ratio of 1:1) is a good result that paves the way for
subsequent experiments.

Overhead: In this experiment, we evaluated the im-
pact that the metadata required by our solution implies. We
measure overhead, after tuple grouping, as the ratio of meta-
data (tc) to the overall value of metadata and data (tc,d),
in percentage. Figure 5 shows the 24h average overhead for
nine settings. In general, from our experiments we have seen
that a data tuple td has a dimension of 272 bytes, of which
136 bytes of data (d) and 136 bytes of privacy metadata
(idS, sn, hash(d)). Looking at the 100s100c throughput
configuration with the peak value of 9000 B/s and knowing
that we were able to output a d data vector of 8432 bytes
(62 d data values of 136 bytes), the overhead is about 568
bytes, that is 6.3% of the total size. In this case, we reach the
minimum overhead of the output stream. The overhead has
the most significant impact when there are few transactions
at the entrance and, therefore, little possibility of aggre-
gating them. In fact, we achieved the minimum average
overhead of 21% with 100 streams and 100 consumers. The
overhead chart highlights the efficiency of the system on the
aggregation of tuples and privacy compliance checks. The
negative trend confirms the scalability of the platform as
streams and consumers increase.

Transaction time: Figure 6 shows the 24 hours average
transaction time for different settings. Our framework is
able to reach around 6 transactions per second (0.17 s/tx),
with an average of 3 transactions per second (0.33 s/tx), as
shown in Figure 5. The average transaction time is almost
constant as the number of streams changes because the
data owner gateway aggregates the stream and lightens the
blockchain. We note a time increase when the number of
consumers increases because the compliance checks on pri-
vacy preferences and policies increase. Despite the increase
in incoming streams, the graph shows that we are able to
maintain an almost constant processing time and that it
mainly depends on the number of consumers. This means
that the system is able to scale well with respect to the num-
ber of input streams, thanks to the aggregation techniques
used. Based on the obtained results, we estimate that our
proposal can handle about 10 buildings22 concurrently with
10 dwellings each and latency under 400 milliseconds. This
confirms the feasibility of our approach, also considering
the large margins for improvement in the use of more
performing hardware, software, and networks [13].

22. Calculation based on the Italian average number
of dwellings per buildings https://entranze.enerdata.net/
average-number-of-dwellings-per-building.html
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8 RELATED WORK

The IoT field has experienced considerable development
and, as a result, security and privacy have been studied
deeply. In what follows, we briefly review those propos-
als closer to our proposed framework. Many papers have
addressed the issue of privacy preferences enforcement in
the IoT domain. Over the years we have seen a gradual mi-
gration of the policy enforcement process from the cloud to
the fog. The authors in [14] present the Policy Enforcement
Fog Module (PEFM), achieving better privacy enforcement
results with less overhead than a cloud-based solution. The
work presented in [10], from which we borrow the privacy
model adopted in our framework, introduces a decentral-
ized privacy enforcement framework for the IoT scenario.
Users can specify privacy preferences on local gateways
which control the release of the data to the consumers. [15]
presents the Privacy Preference for IoT (PPIoT) Ontology
and provides methods and examples to apply it in the IoT
context in light of the GDPR. The use of machine learning
is also increasingly present in the privacy enforcement pro-
cess, for instance [16] demonstrates this trend. The authors
proposed how machine learning can use data sources for
more robust privacy management. An overall view of the
different technologies and methodologies for IoT privacy
enforcement is given by a recent comparative study [17].
It provides an analysis of the state-of-the-art of the main
IoT frameworks and focuses on GDPR support. The results
show that many frameworks are still not GDPR-compliant,
and there are still open challenges, such as usable user
interfaces, lack of privacy risk analysis and so on. Our
framework has a number of innovative features compared
to the abovementioned proposals, the main is that it is
a fully decentralized solution for privacy preferences’ en-
forcement, leveraging on blockchain, that also guarantees
transparency of the enforcement process for all the involved
parties without the need of a trusted entity.

Other related work are those adopting blockchain for
solving different security and privacy issues in the IoT

domain. [18] proposes a ”miner”, that is, a high resource
device, installed in every smart home for communication
between IoT devices and blockchain. Here, the blockchain
is used to store policies and for access to resources, adding
and removing the devices authorized for communication.
In the medical field, healthcare organizations need data
storage systems that protect patient privacy but, at the same
time, enable data sharing for medical research. Therefore,
blockchain has been investigated for its characteristics of
transparency, trust, and immutability of data, as in [19] and
[20], where the authors propose that sensitive patient infor-
mation be encrypted and stored in the blockchain. Unlike
our system, data are not shared as private data, but stored
permanently in the blockchain. The general-purpose archi-
tecture proposed in [21] uses Hyperledger Fabric to protect
communication between IoT devices, using asymmetric en-
cryption. The blockchain includes malicious actor detection
and guarantees non-repudiation and privacy. The work pre-
sented in [22] implements a reliable ownership management
system for medical IoT devices that uses Ethereum and
smart contracts instead of Trusted Third Parties. In the
review study presented in [23], the authors analyzed the
vulnerabilities of medical IoT devices and then proposed a
solution for the exchange of patients personally identifiable
information, leveraging on blockchain. [24] presents a sys-
tem for the exchange of patient data via blockchain, where
data are encrypted, signed with the digital ring model, and
then stored on the cloud. [25] focuses on wearable medical
devices only, where a smart device, such as a smartphone,
collects raw data and communicates with the blockchain.
At the end, it sends an alert to the hospital to report the
presence of data on the blockchain. Another work closely
related to ours is [26], a platform for monitoring patient
vital signs using smart contracts on Hyperledger Fabric.
PATRIoT [27] is an Ethereum IoT data sharing platform.
They use an ontology-based privacy model called LIoPY.
Unlike our platform, their privacy enforcement process is
done off-chain, using the blockchain only to organize the
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data exchange between data producer and consumer.
Our proposed framework greatly differs from the above-

mentioned proposals in that none of them: (1) is highly user-
centric with the possibility of specifying fine-grained data
owner privacy preferences (2) is designed for the massive
audit of the privacy preference enforcement process.

9 CONCLUSION

In this paper, we presented a blockchain-based pri-
vacy enforcement framework for IoT smart environments.
Blockchain provides a distributed and immutable system
for carrying out privacy enforcement and preserving its out-
come, so that it can be used for future audits, guaranteeing
non-repudiation. We plan to extend this work along many
directions. First of all, we want to enable the blockchain to
perform privacy-preserving complex event processing, so
as to move the processing of the tuples from the consumer
to the blockchain. We will also expand the privacy model
in order to manage extended privacy preferences on de-
rived data. We also plan to define optimization strategies
for the execution of privacy preferences’ enforcement on
the blockchain and design an off-chain self-designed data
release layer.
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