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ABSTRACT
IoT devices have been considered an attractive target for malware

(e.g., botnets) due to their low computational resources and lack

of security measures. The literature focuses on detecting malware,

but less attention is given to recovery solutions. In addition, with

the development of data processing regulations in different coun-

tries, a need for transparent recovery systems that can help orga-

nizations present their due diligence arises. This work proposes a

blockchain-based backup policy enforcement framework for IoT

where an organization can formalize backup policies and enforce

them. We have run our solution under extensive tests that show

that it can be deployed in real-life IoT environments, despite the

limited computational resources of IoT devices.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems.
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1 INTRODUCTION
According to PurpleSec

1
, cyberattacks had a 600% increase during

the COVID-19 pandemic in 2020. Hackers exploit security vulnera-

bilities to perform malicious activities such as data theft, espionage,

etc. In general, cybercriminals attack different targets using mal-

ware—i.e., malicious software—such as viruses, worms, spyware,

ransomware, etc. Indeed, in 2020, 61% of organizations experienced

1
https://purplesec.us/resources/cyber-security-statistics/
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a malware incident spread among their own employees. This num-

ber grew to 74% in 2021 because smart-working increments the

remote connection. One of the preferred scenarios for cyberattacks

is represented by IoT devices
2
. IoT devices are estimated to reach

41.6 billion by 2025 with an overall annual growth rate of 28.7%

from 2018 to 2025 [4]. IoT represents a unique opportunity to sig-

nificantly increase productivity, reduce energy consumption, and

improve the process in which they are used. However, they suffer

from various security issues such as open ports, system updates

not being performed, and weak security mechanisms. Attackers

can easily compromise these devices and perform malicious actions

based on various security issues, as stated by OWASP IoT Top 10.
3

One of the main challenges for the recovery systems is ran-

somware attacks. Ransomware are a type of malware that encrypts

files and make devices unresponsive. In 2021, only 6 ransomware

families were responsible for a loss of $45 million paid in cryp-

tocurrencies to their developers. They attacked, in the US only, 600

hospitals through medical IoT devices
4
. According to TrendMicro,

a leading security company, IoT ransomware have been evolving in

the last few years and they target IoT devices in the medical, food,

and agriculture sectors.

In order to reduce the impact of different malware attacks on IoT

systems, in this paper, we introduce a malware recovery framework,

called MalRec, that allows compromised devices to recover and

return to a safe state. Our solution is based on blockchain to store

backup metadata and enforce backup policies, that is policies stating
constraints on the backup process (such as the required number of

replicas, the frequency of backups, etc).

MalRec exploits blockchain to help companies complywith differ-

ent standards and regulations (e.g., GDPR, ISO/IEC 27040, NIST SP

800-171, etc.) by enforcing backup policies through smart contracts,

which are autonomously executed programs hosted on blockchain.

For example, suppose an organization must comply with a backup

policy that states that the organization must have daily backups

with 3 different replicas in different storage media. In that case, a

smart contract can ensure that any submitted backup complies with

this policy by verifying the submission time and the locations of

the backups. Smart contracts can also be used to retrieve backups’

2
https://www.iotworldtoday.com/2021/09/17/iot-cyberattacks-escalate-in-2021-

according-to-kaspersky/

3
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information that satisfies a specific filter, such as the submitter

and the timeframe when the backups were submitted. Blockchain

ensures a transparent and immutable verification of the policies

that companies may want to enforce. In addition, it ensures that all

interactions with the blockchain are authenticated through cryp-

tographic primitives. To ensure the confidentiality of the stored

backups MalRec exploits public-key cryptography to encrypt back-

ups before uploading. Furthermore, it ensures the integrity of the

backups via digital signatures. Blockchain, by design, is transparent,

so it provides accountability and audit features since all actions

are authenticated. MalRec is also agnostic from the used storage

media. Hence, companies may choose to store backups locally or

in the cloud (e.g., Amazon AWS, Google Cloud, Microsoft Azure,

etc.), being able to comply with different regulations (e.g., GDPR)

regarding the storage location. The availability of the backups is

ensured by the selected storage service.

There are some challenges to ensuring a sound backup gener-

ation. For example, a tampered device may generate an invalid

backup containing malware traces or corrupted data. The recovery

system should avoid that a device downloads those backups during

the recovery phase. Otherwise, it would spread the malware again

after it has been cleaned up from it. To avoid this situation, MalRec

label invalid backups by exploiting the available detection systems.

MalRec is designed to allow organizations to manage backups in

heterogeneous networks. It can be used with different computing

paradigms, such as fog or edge computing, or with no layer between

the IoT devices and the servers. The reference scenario for Malrec

usage consists of single or multiple organizations with different

IoT devices and possibly behind aggregators. When IoT devices

generate real-time data, the data volume grows drastically, which

brings a need for aggregators that receive these amounts of data and

process them. These aggregators can serve as an edge or fog layer

when IoT devices have limited computational and storage resources

that do not allow them to store and process the data they generate.

In our scenario, the aggregators can serve as a helper to aggregate

and submit IoT devices’ backups. Organizations define their own

backup policies enforced through smart contracts. Moreover, the

organizations’ administrators control their respective IoT devices’

public-key cryptography pairs used to encrypt and decrypt backups.

Figure 1 shows an example of a possible scenario for MalRec.

Many efforts have been focusing on malware detection problem

in IoT, but few are focusing on the malware recovery problem.

Among them, the work in [6] investigates the problem of reliable

IoT architectures (and backup systems as a main component for

fault tolerance). It proposes a generic architecture for reliable and

fault-tolerant IoT networks under different computing paradigms

(e.g., for, edge, etc.). It relies on Mobile Agents that serve as resource

and network monitoring agents to share the information about

device links’ states. In addition, they consider computing layer

agents (e.g., fog, edge, etc.) as backup agents for the IoT devices.

The authors of [12] focused on personal health care data due

to their extreme importance. They proposed an architecture for

a reliable and fault-tolerant healthcare system composed of IoT

devices and gateways (e.g., devices that aggregate data). Data of

each IoT device is backed up in multiple gateways.

The work in [8] proposed a model to improve data availability

that takes different circumstances into account (e.g., force majeure,

technical interrupts, etc.). The model is based on the 3-2-1 backup

strategy that requires the data to be stored in 3 replicas in two

different locations where 1 of them is offsite.

MalRec differs from the above-discussed approaches on many

levels. First, MalRec is not tied with only one use case or organiza-

tion. It can support multiple use cases with different organizations

at the same time, unlike the work in [6, 8, 12]. Second, unlike the

work in [8, 12], MalRec proposes a modular architecture to en-

force multiple backup policies at the same time. Third, MalRec is

designed with recovering from attacks in mind. In this sense, it

provides a gateway to report malware attacks able to automati-

cally invalidates the backups containing malware traces. Finally,

the discussed approaches are centralized solutions while MalRec is

decentralized since it leverages blockchain to enforce the policies

in a decentralized manner.

In summary, in this paper, we propose a blockchain-based backup

policies enforcement framework that helps organizations comply

with different regulations and standards regarding the processing

of users’ data. Thus, the main contributions of this proposal can be

summarized as follows:

• it exploits blockchain to ensure the immutability, transparency,

confidentiality, and security of users’ backed up data;

• it implements a framework to recover data after a malware

attack, leveraging on smart contracts for automatic backup

retrieval and backup policies enforcement;

• it has been tested extensively the scalability of our frame-

work by evaluating its performance in terms of throughput

and latency.

Outline. The rest of the paper is organized as follows. In Section

2, we introduce blockchain and different backup techniques. Sec-

tion 3 describes the requirements that drive the design of MalRec.

Section 4 illustrates the overall workflow, and the details of backups

upload, invalidation, and retrieval. Then, in Section 5, we discuss

the implementation details. Section 6 analyzes the experimental

results. Finally, we conclude the paper in Section 7.

2 BACKGROUND
In this section, we introduce some background information on

backup techniques and blockchain.

2.1 Backup Techniques
The term "backup" indicates a set of activities that allow a system

to perform recovery operations. It refers to the process of creating

copies of data and storing it in a safe place to be accessed in case of

an incident.

There exist three main backup types [5]. One is a full backup

that is copying all data into external storage. Its main advantage is

the speed of recovery; however, it requires large storage space and

a long time to be created. For this reason, it is usually not suitable to

be used alone, but in combination with the other two backup types:

incremental and differential. The first one consists of copying only

the data that differ from the previous backup. Indeed, it requires

less storage and time to be created. In contrast, differential backup

is a middle ground between the other two in terms of storage space

and needed generation time, as it stores all the changes from the
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Figure 1: A Reference Scenario for MalRec

last full backup. Each organization has a different backup strategy.

Some organizations might perform full backups, while others might

prefer doing incremental or differential backups with a different

rate.

2.2 Blockchain
Blockchain is a distributed ledger shared among a peer-to-peer net-

work, in which members participate in its maintenance. The ledger

stores as transactions all the activities and exchanges of resources

that network participants make. Transactions are grouped into

blocks containing a reference (i.e., the hash) of the previous one. In

this way, a chain of blocks is generated, making them immutable. In-

deed, the ledger is characterized by immutability: once a transaction

is added, no one can tamper with it. Blocks are generated by block

generator peers, that exploit public-key cryptography to broadcast

them in the network. One of the main characteristics of blockchain

is that it is decentralized: the activities of any individual node are

coordinated and verified without the intervention of any central

authority. This coordination is achieved through a procedure called

consensus, according to which only the transactions that receive

a sufficient number of approvals can update the ledger. There are

different mechanisms for achieving consensus in a blockchain. For

instance, some blockchains, like Bitcoin and Ethereum 1.0, adopt

the Proof of Work (PoW ) [9]. It consists of nodes (i.e., miners) in

competition with each other to generate blocks. Each miner must

solve a cryptographic puzzle, and the fastest receive a reward. Other

blockchains, like Algorand
5
and Cardano

6
, adopt the Proof of Stake

(PoS)[9], in which nodes are randomly selected to generate blocks

based on their stakes. In addition, other blockchains, like Hyper-

ledger Fabric [2], rely on a Byzantine Fault Tolerant approach, which
supports the ability of a network to reach consensus even if fail-

ures of some nodes occur. One of the most popular algorithms in

blockchain for solving Byzantine problem is Practical Byzantine
Fault Tolerant (PBFT ) [13].

A blockchain can be classified as permissionless or permissioned.

Permissionless blockchains are open for the public to join the

network. On the other hand, permissioned ones are restricted

to selected participants by the organizations that maintain the

blockchain.

5
https://www.algorand.com/

6
https://cardano.org/

In this work, we useHyperledger Fabric: a permissioned blockchain

framework. It stands out from other blockchains due to its modu-

lar architecture, allowing the definition of pluggable components,

such as the consensus protocol, the key management protocol, the

ordering service, etc. This characteristic can be exploited to de-

fine a network suitable for different contexts. Further differences

with other blockchains are the possibility to write smart contracts

with general-purpose programming languages and the capability

to group organizations in a consortium while having the possibility

to keep the exchanged data private through channels.

We choose Hyperledger Fabric due to its elasticity, scalability,

and flexibility which makes it suitable for several application do-

mains, allowing the definition of customized smart contracts. It can

process up to 3000 transactions per second and supports different

general-purpose languages like Java, Golang, and JavaScript. Fur-

thermore, it inherits the benefits of blockchain since it guarantees,

in any case, the integrity of the data stored inside the blockchain

thanks to the consensus procedure. Indeed, we rely on Fabric to

store backup metadata as they simplify the retrieval process when

devices need to download their backups. We introduce Hyperledger

Fabric terminology in what follows (we refer the interested reader

to [2] for more details).

Peers: A peer is a node that interacts with the blockchain by

submitting a transaction, retrieving a transaction, and interacting

with a smart contract. There are two types of peers: privileged and

unprivileged. Privileged peers (e.g., organizations’ admins) partici-

pate in consensus by running smart contracts and validating trans-

actions. On the other hand, unprivileged peers (e.g., IoT devices)

read and write the blockchain without running smart contracts or

validating transactions.

Channel: A channel is the main communication mechanism

that allows organizations within it to exchange messages with each

other. There can be one or more channels inside the network in

which different organizations may participate.

Blocks andTransactions:Blocks are a set of transactions. Trans-
actions are issued by blockchain clients and they contain headers

and payloads. Headers consist of cryptographic metadata (e.g., sig-

natures) used to validate transactions. Payloads contain data that

are used as input to the smart contracts that encode the application’s

business logic.

https://www.algorand.com/
https://cardano.org/


ARES 2022, August 23–26, 2022, Vienna, Austria Ahmed Lekssays et al.

Ordering Service: It is an entity characterizing Hyperledger

Fabric. It is composed of a set of orderers, which are nodes that

collect all transactions and order them to be validated by all peers

in the channel.

Smart Contracts: A smart contract (or chaincode in Hyper-

ledger Fabric) is a program that defines the business logic of an

application. In Hyperledger Fabric, it is programmed with general-

purpose languages like Golang, JavaScript, and Java. They are trig-

gered by submitting transactions and they are run by the privileged

peers that agree on their output (i.e., consensus). The committee

(i.e., the set of selected nodes by organizations) has copies of the

same smart contracts that they run in an asynchronous way. Then,

they agree on the execution’s output (i.e., reaching consensus).

Upon an agreement, the state of the blockchain changes (depending

on what the smart contract was implemented to do). In this paper,

we use the terms "smart contract" and "chaincode" interchangeably.

3 BASIC REQUIREMENTS FOR AN IOT
BACKUP SYSTEM

In this paper, we propose a recovery solution that allows IoT devices

to generate, store and retrieve backups efficiently and securely. The

system design has been driven by several requirements, described

in what follows.

Backup Policies Enforcement. Different organizations might

have different backup strategies that they want to enforce, so Mal-

Rec needs to be flexible and modular in the sense that it should

allow organizations to encode different strategies which satisfy

their needs. For example, companies might want to adopt the 3-2-1

backup policy implying that there must be three backups in two

different storage mediums and one of them must be offsite.

Compliance with Storage Security Standards. International
secure data storage standards, such as NIST SP 800-171 [10] and

ISO/IEC 27040, or privacy laws, such as GDPR
7
, focus on multiple

properties to ensure secure backup storage, namely authentica-

tion and authorization, confidentiality, accountability and audit,

integrity, incident response, and availability.

• Authentication and Authorization. Backup generation

and uploading shall be authenticated operations where the

entity that interacted with the system can be identified. In

addition, the backup system shall make sure that the entity

that contacted it is authorized to retrieve the backups.

• Confidentiality. The backups shall be encrypted with the

public key of the entity that generated them. This require-

ment allows the encrypted backups to be shared anywhere

(even in P2P file systems like IPFS) without compromising

their confidentiality.

• Accountability andAudit.All entities’ actions shall be pre-
served and no one shall be able to manipulate them. So, the

backup system shall keep track of all actions by all entities

where these actions are immutable.

• Integrity. The backup system shall preserve the integrity of

the backups to avoid retrieving compromised backups that

might allow remote attackers to control devices.

• Incident Response. The backup system shall allow the de-

vices to return to a safe state even in the case of malware

7
https://eur-lex.europa.eu/eli/reg/2016/679/oj

attacks where malware could be backed up as a part of a

normal backup procedure.

• Availability. The backup system shall allow the retrieval of

backups and their metadata at any given moment in time.

4 SYSTEM ARCHITECTURE
In this section, we discuss MalRec’s workflow consisting of three

main steps: backup upload, backup invalidation, and backup re-

trieval. These steps are discussed in Sections 4.1, 4.2, and 4.3, re-

spectively.

Our proposed solution exploits blockchain to i) enforce the

backup policies through smart contracts, and ii) comply with stor-

age security standards that require integrity, authentication and

authorization, incident response, and accountability, as discussed

in Section 3.

The system is composed of several organizations with differ-

ent IoT devices that can be deployed with different computing

paradigms (e.g., fog or edge) as shown in Figure 1. Each organiza-

tion has an administrator peer that plays a fundamental role in key

management, as we assume it owns the master key (see Section 5).

The organization’s admin generates a key pair for all peers belong-

ing to its organization, which they will use to encrypt and decrypt

their backups. However, if a device undergoes a malware attack, it

may not access the private key for decryption operations because

it might be encrypted by ransomware, for example. For this reason,

admins monitor the state of the peers of their organizations, aiming

to identify attacked devices. If needed, an admin can generate a new

key pair, acquire all backups, encrypt them with the new public

key, and then send them to the recovered device.

4.1 Backup Upload
In this section, we explain the backups’ upload process, which is

illustrated in Figure 2.

Figure 2: Backups’ Upload

The process starts when a device generates the backup locally

(step 1). MalRec adopts an initial full backup, followed by periodi-

cally incremental backups. Backups are logically stored in a linked

list, in which each backup keeps a reference to the previous one

https://eur-lex.europa.eu/eli/reg/2016/679/oj
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(See Definition 4.1). This data structure allows a device to check

the correct sequence of the received backups. If a backup is marked

as invalid because it contains signs of malware, the system must

change the pointer of the involved backups to prevent the linked

list from storing the tampered backup (See Section 4.2 for more

details). Then, the device encrypts the backup with its public key

(step 2). After that, it uploads the backup to the storage media (e.g.,

IPFS, Cloud, Local Server, etc.) (step 3), where the latter returns the

backup’s path (step 4). At this point, the device submits a backup

metadata transaction, formally defined in Definition 4.1, to the

blockchain. It is worth noting that: i) backups are signed to ensure

integrity, so the backup metadata includes the checksum and signa-

ture; and ii) backup metadata includes the last submitted backupID

that serves as a reference to keep all the backups of a device as a

linked list for batch retrieval (See Section 4.3 for more details).

Definition 4.1. BackupMetadata Transaction.Abackupmeta-

data Transactionbackupmd is a tuple ⟨bID,deviceID,paths, checksum,
siд, pbID,v, s, t⟩, where bID, deviceID, paths , checksum, siд, pbID,
v , s and t are the unique backup identifier, the unique device

identifier, the backup paths in storage media, backup’s checksum,

backup’s signature, previous backupID, backup’s validity (true by

default), the backup’s size, and the timestamp of the backup sub-

mission, respectively.

The blockchain hosts the Backup Smart Contract, shown in Algo-

rithm 1, that checks if the previous backup is valid (lines 6-8) and if

the backup’s metadata satisfies the organization’s backup policies

(lines 9-20) (See Section 4.2 for more details) (step 6). To formalize

backup policies, MalRec leverages a backup policy template bpt ,
that can be used by organizations to specify their backup policies

based on the number of replicas, frequency of the backup, storage

location, size, etc. A backup policies template is formally defined

in Definition 4.2. Finally, the Backup Smart Contract returns the
verification response (step 7).

Definition 4.2. Backup Policies Template. A backup policies

template bpt is a tuple: ⟨r , f ,o, s⟩, where r , f , o, and s are the total
number of replicas (onsite and offsite), backup frequency, number

of replicas stored offsite, and the backup size limit, respectively.

Example 4.3. Let us assume that an organization wants to adopt

the 3-2-1 backup policy with a daily frequency and unlimited

backup size. This policywill bemodelled as follows:bpt = ⟨3, 1, 1,∞⟩.

4.2 Backup Invalidation
The backup invalidation process starts when IoT devices suffer from

malware attacks. In these critical situations, the backups could sat-

isfy the backup policy in place, but they might contain traces of the

attacking malware. This is managed by theMalware Smart Contract
that is triggered by a malware transaction, defined in Definition

4.4. The latter is submitted by the organization’s admin. The or-

ganization’s admin monitors the devices that belong to his/her

organization. So, when he/she gets an alarm of detected malware,

it extracts the detection timestamp and estimates the start times-

tamp (e.g., by getting the earliest appearance of the malware in the

network or specifying a threshold for the attack duration). Then,

theMalware Smart Contract gets all the backups that fall within the

Algorithm 1 Backup Smart Contract

Input: Backup Metadata Transaction backupmd
1: policy ← дetOrдanizationPolicy(backupmd .deviceID)
2: of f site ← дetOf f siteBackupsLenдth(backupmd .paths)
3: onsite ← дetOnsiteBackupsLenдth(backupmd .paths)
4: latestBackup ← дetLatestBackup(backupmd .deviceID)
5: backupmd .v ← f alse
6: if latestBackup .v == f alse then
7: r e jectBackup(backup)
8: end if
9: if of f site + onsite < policy .r then
10: r e jectBackup(backup)
11: end if
12: if of f site < policy .o then
13: r e jectBackup(backup)
14: end if
15: if latestBackup .t − backupmd .t ! = policy .f then
16: r e jectBackup(backup)
17: end if
18: if backupmd .s > policy .s then
19: r e jectBackup(backup)
20: end if
21: backupmd .v ← true
22: acceptBackup(backup)

estimated start and end of a malware attack. Then, it invalidates

each one of them. Due to lack of space and the simplicity of the

actions contained in theMalware Smart Contract, we do not present
the pseudocode (we refer the interested readers to the open source

implementation of MalRec discussed in Section 5).

Definition 4.4. Malware Transaction. A malware transaction

mtx is a tuple: ⟨deviceID,astar t ,aend ⟩, where deviceID, astar t ,
and aend are the infecteddeviceID, the estimated timestamps when

the attack started and ended, respectively.

The backups are logically organized in a linked list since each

backup metadata contains a reference to the previous backup. So,

the Malware Smart Contract marks the infected device’s backups in

the infection timeframe as invalid. Thus, when a new backup meta-

data transaction is submitted, the Backup Smart Contract checks if
the backup reference is valid. This check helps in retrieving only

the valid backups to avoid further infection by the malware traces

(See Section 4.3 for more details).

4.3 Backup Retrieval
The backups retrieval process (cfr. Figure 3) starts by getting the

desired backup metadata by the BackupID. Then, the Backup Smart
Contract checks if the querying device is authorized to retrieve

that specific backup (step 2). The interactions with the blockchain

in MalRec are authenticated through certificate authorities. So,

the entities that submit transactions to trigger a smart contract

are verified against the authorization rules that the organization’s

admin specified. This step is an additional security layer since

the backups are already encrypted. After that, the Backup Smart
Contract returns the requested backup metadata if the check is

successful (step 3). After getting the backup metadata, the device

extracts the backup path and queries the storage media (step 4). The

latter returns the backup file (step 5). Finally, the device decrypts

its backup (step 6).

It is worth noting that in step 1, the device may want to retrieve

a single backup or a list of backups within some timeframe. So,

in MalRec, there are 3 possibilities: i) query with BackupID that
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returns a single backup that satisfies the backup identifier, ii) query

with DeviceID that returns all the backups submitted by a specific

device, and iii) query with DeviceID and a timeframe (start and

end timestamps) that returns a list of backups submitted by the

specified device within the specified timeframe.

Figure 3: Backups’ Retrieval

Once the device receives the requested backups’ metadata from

blockchain, it extracts each backup’s paths to download a replica

from the storage media. Once downloaded, the device can start a

validation procedure to verify the file integrity by calculating the

checksum (i.e., hash) and comparing it with the checksum used to

download the data. If there is a match, the data is reliable and can

be used. Finally, the device can begin the recovery procedure with

the downloaded backups.

The described backup retrieval process is for a normal operation

of the system where the backups are safe. However, when the

backups of an infected device contain malware traces, additional

measures should be taken. The procedure for recovering an infected

device is shown in Figure 4. In order to recover an infected IoT

device, the admin gets and decrypts the backup (step 2). Then,

it generates a new key pair (step 3) that is used to encrypt the

decrypted backup (step 4). After that, it sends the new key pair via

a secure channel to the device (step 5). Finally, it uploads the backup

to the storage media (step 6), gets its path (step 7), and submits

the backup metadata to the blockchain (step 8). The Backup Smart
Contract checks the validity of the latest backup (Algorithm 1 - lines

6-8) and the compliance of the backup to the adopted backup policy

(lines 9-20) (step 9). If any of the checks fail, the backup is rejected.

Then, it returns the verification response (step 10). After that, the

device can query the Backup Smart Contract with itsdeviceID to get

its backups similarly to the normal procedure described in Section

4.3.

4.4 Discussion
In this section, we discuss how MalRec satisfies the requirements

presented in Section 3.

Backup Policies Enforcement. MalRec is designed to adopt

different backup policies that companies might want to enforce.

Figure 4: Recovering an infected device in MalRec

MalRec provides blockchain-based backup policies enforcement by

formalizing backup metadata and enforcing their validity through

the Backup Smart Contract.
Compliance with Storage Security Standards.

• Authentication andAuthorization.MalRec submits back-

ups metadata on blockchain (precisely Hyperledger Fabric).

The latter checks the transactions’ authentication through

certificates. In addition, it enforces authorization through

secure channels, so only authorized entities can join. For ex-

ample, in a collaborative setting, each organization can have

its own communication channel where the organization’s

admin specifies the authorization rules.

• Confidentiality.MalRec backup uploading procedure (cfr.

Section 4.1) requires the backups to be encrypted with the

owner’s public key, so the encrypted backups can be shared

anywhere (even in P2P file systems like IPFS) without com-

promising their confidentiality.

• Accountability andAudit. SinceMalRec leverages blockchain

for backup uploading and retrieval, all actions of users that

interact with the blockchain are preserved and no one can

manipulate them since they are immutable. So, MalRec pro-

vides all the necessary information for auditing and ensuring

accountability.

• Integrity. MalRec ensures that the metadata (and hence

the backups) are not modified through 1) checksums and 2)

immutability of the blockchain.

• Incident Response.MalRec provides the utilities to react

in case of an incident (e.g., malware attack). If malware was

backed up, MalRec provides utilities through Malware Smart
Contract to invalidate backups as discussed in Section 4.2.

• Availability. MalRec ensures that backups’ metadata are

available and immutable at all times. Companies might want

to store backups in different locations to comply with certain

regulations, so the availability of the backups is dependent

on the storage medium. However, MalRec is agnostic of the

storage medium, so it can be used with the storage medium

that companies find suitable for their use case.
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5 IMPLEMENTATION
We simulate IoT devices as Docker

8
containers. Since IoT devices

usually have limited resources, we create constrained Docker con-

tainers in terms of computational resources to simulate real situ-

ations. We rely on IPFS
9
, a distributed file system, as our storage

medium. We choose IPFS to show that MalRec can be shipped as

a decentralized solution. Thus, the reference implementation of

MalRec is based on IPFS. It is worth noting that IPFS preserves the

integrity by design since the identifier of an uploaded backup is

its checksum, so any tempering with the stored backup would be

identified. We use Golang to implement MalRec smart contracts:

the backup and the malware smart contract. The first provides end-

points to add backups and retrieve them, while the second provides

an endpoint to report malware that will automatically invalidate

backups that have malware traces.

We use CouchDB as the state database since it provides indexes

that increase the performance of queries. So, a device can query

efficiently all of its backups, or the ones within a time frame. The

source code of the application is open source and is available pub-

licly on GitHub.
10

The design of our solution is modular, so the process of monitor-

ing and defining the files and folders to be backed up can be chosen

by the user. Our solution monitors a list of folders and a list of file

extensions (e.g., .txt), so when there is a change, it compresses the

changed and new files into one compressed folder (i.e., in .tar.gz

format).

As discussed in Section 4.1, once a device generates a backup,

it encrypts it with the public key before uploading it to a storage

medium (i.e., IPFS for our reference implementation). However, the

need for a mechanism to keep the asymmetric keys secure from

being tampered with by malware arises because if a device cannot

access its private key, it cannot decrypt its backups as shown in

Section 4.2. For this reason, we support a hierarchical key schema

for generating asymmetric keys. According to this procedure, each

element in a hierarchy computes the keys for all of those located

at an underlying level [11]. In our solution, we have one admin

peer for each organization that owns a master key and monitors its

devices. This peer exploits the master key to generate a new key

pair for each underlying peer.

In our solution, we use BIP32
11
, a standard used in Bitcoin and

Ethereum to generate Hierarchical Deterministic Wallets (HD
Wallets) (i.e., hierarchical keys). Whenever a device needs to re-

trieve backups, at first, it has to acquire its metadata by querying

blockchain, as discussed in Section 4.3, and then it can download

them from IPFS using the backup path.

The three types of queries that a peer can execute are imple-

mented in three different endpoints. First, to get a single backup,

a peer must invoke the chaincode with the QueryBackup function.

The latter requires a backupID as a parameter, which is used to

check if the related metadata exists in the ledger. If so, they are

returned to the peer. Second, to get all its backups’ metadata, it

invokes QueryBackupsByDeviceID function by sending its deviceID
as a parameter. Finally, to download backups submitted during a

8
https://www.docker.com

9
https://ipfs.io/

10
https://github.com/lekssays/malrec

11
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

time frame, it invokes the QueryBackupsByTimestamps function,
which receives as parameters the start timestamp, end timestamp,

and the deviceID. It is worth noting that both QueryBackupsByDevi-
ceID and QueryBackupsByTimestamps exploit the indexes feature
of CouchDB.

6 EXPERIMENTAL RESULTS
We adopt Hyperledger Caliper

12
as blockchain performance bench-

mark framework to evaluate the performance of our system. More

precisely, we are interested in throughput and latency. The tests

were executed on a computer running Ubuntu 20.04 LTS, with

Intel® Core™ i7-9700K CPU, 16GB RAM, and 500 GB SSD. We

simulate each peer in a constrained Docker container with 512MB

of RAM. Finally, we support a block size of a maximum of 10MB,

which can contain at most 500 transactions. In our tests, we do

not consider the time required to download a backup from IPFS

since it depends on external factors, such as the internet connection

speed, the backup size, etc. Therefore, our tests start to monitor

when a transaction is submitted and finish when the device receives

backup metadata from the blockchain. We test over a network of

three organizations with three peers for each one, including one

admin peer that participates in consensus.

We perform three different tests, one for each type of query,

described in what follows.

• queryBackup: to get a specific backup by sending its back-

upID;

• queryDeviceID: to get all the backups owned by a specific

device;

• queryTimestamp: to get all backups within the time frame,

defined by a start and an end timestamp, and belonging to a

specific device.

Furthermore, to evaluate how our solution behaves in heavy

loads, we execute each test by setting Caliper workers to send an

increasing number of transactions: starting from 10,000, we reach

50,000, until 100,000 transactions.

The throughput results are shown in Figure 5. Throughput is

evaluated in Transaction Per Seconds (TPS) versus the number of

transactions per second. We observe that the throughput is decreas-

ing according to the increasing number of transactions since the

throughput of queryBackup is 897.7 TPS with 10,000 transactions,

870.1 TPS with 50,000, and 859.2 TPS with 100,000 transactions.

For queryDeviceID, the maximum throughput is 301.7 TPS; then, it

decreases to 279.9 TPS and finally to 276.0 TPS. We get the same

trend with queryTimestamp where the throughput starts from 528.1

TPS, then 519.9 TPS, and 500.0 TPS, at last.

We can observe a difference between the throughput of query-
Backup and the other two tests. This difference is caused by the

type of access to CouchDB because a backup can be retrieved di-

rectly with the backupID in queryBackup. For queryDeviceID and

queryTimestamps, further processing is required because they are

range queries. We also observe a difference between the through-

put of queryTimestamps and queryDeviceID. Instead, both queries

are optimized as the indexes are stored in a B+ tree. This is the

data structure used by CouchDB to store data, in which each leaf

node can store the reference to one or more documents. The time

12
https://hyperledger.github.io/caliper/

https://www.docker.com
https://ipfs.io/
https://github.com/lekssays/malrec
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://hyperledger.github.io/caliper/
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Figure 5: Throughput by varying the number of transactions

complexity of the search operation in a B+ tree is O(log2 t logt n)
for any indexed query, where t is the maximum number of keys

per node, and n is the number of keys stored in the tree. The dif-

ference between the two queries is due to the dimension of the

traversed space inside the B+ tree during the search operation. For

queryTimestamps, at first, the search space is reduced at the range

of the start and end timestamps, and then the check of deviceID
is performed in the smaller range of nodes. Since the entries are

sorted by timestamp, the time complexity of retrieving them with

a binary search is O(log n) where n is the total number of entries.

On the other hand, for queryDeviceID, the search space is larger.

The time complexity of retrieving all the entries is O(n) where n
is the total number of entries. Hence, the I/O operations to the

disk are higher. The obtained throughput shows that MalRec can

be deployed in a real-life IoT environment since our solution can

tolerate a high load.

The latency is given by the time elapsed between the moment

in which the transaction is submitted, and the moment in which

the transaction is included in the blockchain. It can be considered

a delay and is expressed in seconds. The average latency of our

solution, considering all the types of queries for each number of

transactions, is 0.02 seconds. Since backups are not generated in

short time windows (e.g., 1 second), a latency of 0.02 fits our use
case even with extreme cases where transactions are submitted

concurrently in a time window of less than 1 millisecond. Thus,

MalRec provides low latency which allows it to be used in large IoT

networks.

7 CONCLUSION
IoT devices are heavily prone to malware attacks and are usually

victims of botnets due to their lack of security measures. The lit-

erature focuses on detecting malware, but less attention is given

to recovery solutions. In addition, with the development of data

processing regulations in different countries, a need for transparent

recovery systems that can help organizations present their due

diligence arises. This paper proposes a blockchain-based backup

policy enforcement framework for IoT where an organization can

formalize its backup policies and ensure their enforcement. We

have run extensive tests to show that our solution can be deployed

in a real-life IoT environment, despite the limited resources of IoT

devices. MalRec ensures the availability of the metadata and can be

extended to ensure the availability of the backups data in a scalable

way. Thus, there is a need for faster verification of data availability

without the need to download the entire data or compromise the

data’s privacy. Different solutions have been proposed to address

this problem such as relying on fraud proofs [1], zero-knowledge

proofs, or polynomial commitments [7] on data’s erasure coding

[3]. The feasibility and adoption of such schemes in the context of

MalRec remain a future work.
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