
SchemaWalk: Schema Aware RandomWalks for Heterogeneous
Graph Embedding

Ahmed E. Samy
aesy@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

Lodovico Giaretta
lodovico@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

Zekarias T. Kefato
zekarias@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden
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ABSTRACT
Heterogeneous Information Network (HIN) embedding has been a
prevalent approach to learn representations off semantically-rich
heterogeneous networks. Most HIN embedding methods exploit
meta-paths to retain high-order structures, yet, their performance
is conditioned on the quality of the (generated/manually-defined)
meta-paths and their suitability for the specific label set. Whereas
other methods adjust random walks to harness or skip certain het-
erogeneous structures (e.g. node type(s)), in doing so, the adjusted
random walker may casually omit other node/edge types. Our key
insight is with no domain knowledge, the random walker should
hold no assumptions about heterogeneous structure (i.e. edge types).
Thus, aiming for a flexible and general method, we utilize network
schema as a unique blueprint of HIN, and propose SchemaWalk,
a random walk to uniformly sample all edge types within the net-
work schema. Moreover, we identify the starvation phenomenon
which induces random walkers on HINs to under- or over-sample
certain edge types. Accordingly, we design SchemaWalkHO to
skip local deficient connectivity to preserve uniform sampling dis-
tribution. Finally, we carry out node classification experiments on
four real-world HINs, and provide in-depth qualitative analysis.
The results highlight the robustness of our method regardless to
the graph structure in contrast with the state-of-the-art baselines.
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1 INTRODUCTION
Most of today’s data is highly connected. It is structured in the
shape of networks — from social networks to genome and protein
networks. Network embedding has become a ubiquitous approach
for projecting the nodes into a dense space that captures the under-
lying structure of the network [5]. The embeddings can be useful
in automating prediction and downstream tasks such as node clas-
sification and personalized recommendation.

Random walks are widely adopted to explore nodes within close
proximity in the network [5, 17, 21]. To learn node embeddings,
the SkipGram model [12] is typically trained to infer co-occurring
nodes within a sliding context window over random walks. Biased
random walks were also proposed to explore complex phenomena
such as community and role equivalences [4]. These approaches
can learn useful representations on homogeneous networks. Yet,
they are less suitable for heterogeneous networks, such as that in
Figure 1(a), in which multiple node and edge types are expected, as
they are oblivious to these heterogeneous structures.

For Heterogeneous Information Networks (HINs), a widespread
embedding approach is to guide random walks via meta-paths
[2, 18]; a meta-path is a composite set of relations with a distin-
guishable semantic meaning. For example, in Figure 1(b), the A-P-A
meta-path represents collaboration between two authors, while
A-P-V-P-A connects two authors publishing in the same venue and
possibly sharing research interests. Selecting the optimal meta-
paths remains an open challenge in terms of time and quality. The
choice of meta-paths typically requires domain knowledge and can
be task-specific [9]. Some existing methods promise strategies to
automatically extract all meta-paths shorter than a fixed length
[3, 18]. However, the number of meta-paths can grow exponentially
as their length or the number of node types increases. In either case,
the results can be heavily conditioned on the chosen length [8] or
the quality of the pre-defined meta-paths. Alternatively, different
strategies of adjusted random walks have been proposed to equally
sample all nodes types [9]. Yet we observe that, in doing so, their
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random walks may overlook some key semantic structures such as
the collaboration interaction A-P-A in Figure 1(b). Also, because
their sampling is oriented towards node types, in certain scenarios
the random walker may choose not to sample a specific node type—
accidentally discarding other node and edge types neighbors.

We observe that HIN embedding methods are concerned with
efficiently capturing high-order semantics (e.g. meta-paths). Our
core insight is that, in the absence of knowledge about the impor-
tance of edge and node types, the random walker should hold no
assumptions when exploring heterogeneous structures. Ergo, we
choose network schema as a meta-template of HINs [24]. As de-
picted in Figure 1(c), the network schema for a HIN is the smallest
meta-graph with all node and edge types.

To that end, we first propose SchemaWalk, a flexible notion of
random walk for HINs. The idea is to tweak the random walk to
alleviate the bias in exploring the network schema. Precisely, we aim
for a uniform sampling distribution among the edge types. To realize
a desired distribution, the walker makes a probabilistic choice of
which edge type should be sampled next. By tuning an exponential
decay function, we can control how much uniformity is achieved
when exploring the network schema; hence, SchemaWalk can be
conceptualized as a general approach to explore HINs.

Second, we identify the phenomenon of starvation, which can
affect random walkers on heterogeneous networks. Starvation may
take place when certain edge types are infrequent or unevenly
distributed in the graph. As a result, SchemaWalk and similar
approaches may under- or over-sample them in each local con-
text, potentially leading to poor learned representations. Thus, we
present SchemaWalkHO, in which the random walker may skip
direct neighbours in order to reach undersampled edge types.

Our main contributions are highlighted as follows:

• We propose SchemaWalk, a flexible notion of random walk
for HINs. Based on the network schema, SchemaWalk is a
principled general embedding algorithm that captures composite
interactions, and mitigates the dilemma of selecting meta-paths.

• We highlight the drawbacks of node type-based sampling, and
suggest the edge type-based sampling as a flexible and more
fine-grained approach to explore heterogeneous networks.

• We identify the starvation issue and propose SchemaWalkHO
to mitigate it. By jumping further than the immediate neighbours,
SchemaWalkHO can skip local deficient connectivity patterns
and preserve the desired sampling distribution.

• We evaluate the proposed methods for multi-label classification
on several real-world datasets, and further provide detailed quali-
tative analysis. The results show the robustness ofSchemaWalk
that achieves the best to second best performance regardless of
the graph structure, in contrast with the baselines.

2 PROBLEM DEFINITION
Here, we provide key concepts to formulate the heterogeneous
network embedding problem, in line with previous studies [19].

Definition 2.1. Heterogeneous Information Network (HIN).
is a graph G = (V ,E) where V and E are the vertex set and edge set,
respectively. Given a node type mapping ϕ : V →: A, and an edge

Figure 1: An academic Heterogeneous Information Network (HIN).

type mappingψ : E →: R where A and R are the node type set, and
edge type set respectively,G is a HIN when |A| + |R | > 2. Otherwise,
it is called a homogeneous information network.

Definition 2.2. Network Schema. Given a HIN G = (V ,E), a
network schema is a graph TG = (A,R) that consists of all the node
types A and the edge types R from graph G, as its nodes and edges
respectively.

Definition 2.3. Heterogeneous Network Embedding. Given a
HIN G = (V ,E,A,R), for each node v ∈ V , the objective is to learn
d-dimensional continuous embedding f : V → Rd , where d ≪ V ,
that represents the structure and semantics of node v in the network.

3 SCHEMAWALK FOR HETEROGENEOUS
NETWORK EMBEDDING

3.1 Sampling with SchemaWalk
Inspired by the path ranking algorithm (PRA) [11], we define the
following transition probabilities:

PAl ,Al+1 = D−1
Al ,Al+1

MAl ,Al+1 , (1)

whereMAl ,Al+1 is the adjacencymatrix for edge typeR = (Al ,Al+1)
between nodes of typeAl and nodes of typeAl+1.DAl ,Al+1 is the de-
gree matrix defined as deдAl ,Al+1 (vi ) =

∑
j MAl ,Al+1 (vi ,vj ). Thus,

PAl ,Al+1 (vi ,vj ) is the probability that node vj of type Al+1 will be
chosen next by a random walker visiting node vi of type Al . To
guide the behavior of the SchemaWalk-based random walk, we
first define the following probability to choose the next edge type
Ψ(i + 1).

Pr (Ψ(i + 1) = R |vi ) ≜

{
zi+1(R), R = (ϕ(vi ),A),A ∈ NTG (vi )

0, otherwise,
(2)

where NTG (vi ) is the neighboring node types for node vi , and A
is the type of the next node. After selecting the next edge type to
be R, the next node is probabilistically chosen as follows.

Pr (vi+1 = vj |vi ,Ψ(i+1) = R) ≜

{
PAl ,Al+1 (vi ,vj ), ψ (vi ,vj ) = R

0, otherwise .
(3)
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Figure 2: SchemaWalk example on academic graph, α is set to be
0.1. The walker is at node P2 and about to choose a next edge type
from {PP, PA, PV, PT}. The grey nodes are the candidates for the next
transition, depending on the chosen edge type.

The next node vj can be chosen from node vi with a transition
probability defined as Eq.1, only if they are connected through the
edge type R. zi is the normalized "visit" probabilities vector over
the edge types at step i .

zi (R) ≜
α lRi∑
R̀ α

lR̀i
. (4)

Where lRi is the number of visits for the edge type R till step i ,
and α ∈ [0, 1].

The above equations define the basic principles of SchemaWalk
where the walker dynamically determines the next edge type and
node to visit. The key motivation is to present no assumptions over
the heterogeneous structure (i.e. the edge types in the network
schema). To achieve that, SchemaWalk targets a global uniform
sampling distribution over edge types. In detail, the behavior of the
walker is defined by the exponential decay function α l ; the more
an edge type is visited, the exponentially lower its sampling weight
becomes. An example of a walker on DBLP graph is in Figure 2.
Moreover, the value of α decides the rate of the decay over time as
the walk unfolds. Tuning α , controls the level of uniformity among
the edge types within a local context window; Very small α results
in a near-uniform local distributions of edge types. As α approaches
1, individual local contexts are allowed to be skewed, however the
global sampling of edge types remains uniform. Finally, when the
nodes of one type are considerably more than others (e.g. authors
» venues), SchemaWalk may not able to sample all of them as
contexts. This is a design property of SchemaWalk; with a high
number of authors compared to venues, sampling all authors should
not provide more significant contextual information.

3.2 Node vs. Edge Type-based Sampling
SchemaWalk differs from other HIN embedding approaches based
on adjusted random walks, such as JUST [9] or HeteSpaceyWalk [6],
as they seek uniform sampling distributions over the node types.
We argue that uniform sampling over the edge types provides a
more flexible exploration strategy. First, it can generalize to graphs

Figure 3: Example of a difference between penalizing on node type
vs. edge type when the edge type "B-D" is overly sampled.

in which multiple, semantically-distinct edge types connect the
same pair of node types. Second, it better handles oversampling
scenarios. Figure 3 shows a theoretical example of a network schema
that highlights the latter difference, where the edge type B − D is
assumed to be oversampled. Particularly, we can observe in Figure
3(a) a node type-based approach that penalizes node D, potentially
causing undersampling of other node and edge types, such as node
type E and edge type C − D. However, this can be avoided by
penalizing on an individual edge type; as in Figure 3(b) where the
surrounding edge and node types remain reachable, reducing the
risk of undersampling.

On the other hand, JUST [9] follows a rather rigid approach of
node-type based sampling. Specifically, the random walker has a
zero chance of revisiting the same node type for a minimum number
of steps after choosing a different next node type. For example, a
palindromemeta-path such as A-P-A in Figure 1 can not be sampled.
Therefore, JUST may miss key semantic structures.

3.3 Avoiding Starvation with SchemaWalkHO
Unfortunately, on certain types of datasets, SchemaWalk may
suffer from a starvation issue. For example, in the academic graph
in Figure 4, P-V edges are very rare and thus a random walker may
perform a large number of steps without any chance to visit any of
them. The same is true for P-P edges, which are relatively frequent
but concentrated mostly in a small subset of the overall graph. In
this situation, based on Eq.4, the weights z(R) of the visited edge
types decrease exponentially, while those of the edge types that are
lacking do not change for long periods of time.

Because of this imbalance, when the random walker finally en-
counters an underrepresented edge type, it has an overwhelming
chance to only visit that edge type for several consecutive hops, till
the z(R) scores are somewhat balanced. As such, other edge types
around it are ignored, leading to skewed edge visit distributions
and potentially poorer node representations.

To overcome the above limitationswe proposeSchemaWalkHO,
a variant of SchemaWalk that performs the random walks on a
higher-order graph, in which all suitable edge types are present at
each node (e.g. in the example of Figure 4, all papers are associated
to at least one venue and at least one author).

In particular, we consider the possibility of building a weighted,
fully-connected graph from the original sparse, binary adjacency
matrix, using techniques that assign higher weights to direct neigh-
bours and closer nodes. This overcomes the lack of edges in the
original graph while still ensuring that most random walk transi-
tions preserve locality. Several well-known techniques exist that
can be used to build a weighted, fully-connected graph with these
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Figure 4: Example of academic graph inducing starvation in (1) P-P
edges, which are relatively frequent, but concentrated mostly in a
small subgraph and (2) P-V edges, which are very scarce and sparse.

properties, such as Personalized PageRank (PPR) scores [16] or Katz
similarities [14]. In this work we employ the latter. From a practical
perspective, we replace the sparse binary adjacency matrix M in
Eq.1 with the dense weights matrix

M̂ =
H∑
i
βiMi (5)

The weights in M̂ aggregate all possible paths of length up to H
between each node pair, with the influence of each path decreasing
exponentially based on hyperparameter β ∈ [0, 1]. To ensure M̂ is
dense, assuming the original graph is connected, we set H to the
diameter of the original graph.

When dealing with large graphs, to which a dense adjacency
approach would not scale, it is possible to sparsify M̂ , during or
after computation, while still retaining the key property that each
node has access to all relevant edge types.

3.4 RandomWalk based Embedding
To build node embeddings from the random walks, we adopt the
SkipGram model [12]. Specifically, the model learns to maximize
the joint probability of nodes appearing in the same context win-
dow k across the generated random walks corpus P. The objective
function is to minimize the following:

arдmin
θ

−
∑
w ∈P

∑
vi ∈w

∑
vj ∈Cvi ,w,k

log(Pr (vj |vi ,θ )), (6)

wherew is a random walk and Cvi ,w,k is the set of context nodes
that are no further than k steps from node vi in walkw . Typically,
the joint probability is the softmax function:

Pr (vj |vi ,θ ) =
exp( ®vi . ®vj )∑
vk exp( ®vi . ®vk )

, (7)

Given the number of the nodes is typically large, we approximate
the softmax function with negative sampling, similar to [13]. Ergo,
the log-probability in Eq. 6 can be formulated as follows:

log(Pr (vj |vi ,θ )) = logσ ( ®vi . ®vj ) +
|Neд |∑

1
EN∼P (v)[logσ (− ®vi .®vN )].

(8)
|Neд | is the number of negative samples, and P(v) is the sampling
distribution. The above equations defines how SkipGram learns
node representations in HINs based on random walks.

Table 1: The statistics of the experimental heterogeneous networks.

Dataset Edge Types and Number of Edges

Foursquare U-U U-C C-T C-P -
(29771 nodes) 5695 25904 25904 25904 -
DBLP P-P P-A P-V P-T -
(15649 nodes) 6984 13589 4258 26532 -
ACM A-P P-S - - -
(11246 nodes) 13407 4019 - - -
Movie M-A M-C M-D A-A M-M
(20784 nodes) 23223 4001 5630 43395 6194

4 EXPERIMENTS
4.1 Experimental Setup
Dataset. We evaluate on four real-life heterogeneous networks:
Foursquare [23], DBLP [8], ACM [24], and Movie [9]. The statistics
of the datasets are detailed in Table 1.
• Foursquare[23] is a graph based on users’ check-in history in
New York city. The graph has four types of nodes: 2,449 users
(U), and 25,904 check-ins (C), 1,250 points of interest (P) and 168
timestamps (T). The edge types are U-U, U-C, C-T, C-P. Each
point of interest (P) is assigned a label based on its category, e.g.
"bar".

• DBLP[8] is an academic network with 5237 papers (P), 5915
authors (A), 18 venues (V), and 4479 topics (T). The edge types
are P-P, P-A, P-V, P-T. Authors are labeled based on their research
interests with one of the following four areas: "data mining",
"information retrieval", "database", and "machine learning".

• ACM[24] is another academic network that consists of 4019
papers (P), 7167 authors (A), and 60 subjects (S). The edge types
are A-P, P-S. Each paper has one of three research categories:
"databases", "wireless communications", and "data mining".

• Movie is a movies graph [8], augmented by [9]. We experiment
on the biggest connected component with 6517movies (M), 10350
actors (A), 1335 composers (C), and 2582 directors (D). The origi-
nal edge types are M-A, M-C, M-D. [9] augments the graph with
edge typesM-M and A-A, indicating respectively that twomovies
are produced by the same producer and that two actors follow
each other on Twitter. Table 1 shows a huge imbalance among
the edge types. With further investigation, we observe that the
augmented edges of type A-A are mostly present in the network
as a very small and dense region encompassing around 18% of
the nodes of type A. Such deficient connectivity patterns may
present a challenge to SchemaWalk, as explained in section 3.2.
Each movie is multi-labeled with a combination of the genres
“action”, “horror”, “adventure”, “scifi” and “crime”.
Baselines. To evaluate the embeddings’ quality, we compare

our methods with state-of-the-art random walk approaches for
homogeneous and heterogeneous graphs, as follows:
• DeepWalk[17] learns the latent representations of the nodes by
running a set of uniform random walks to explore the graph, and
learning embeddings via the SkipGram [12] model. DeepWalk
was originally designed for homogeneous graphs.
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Figure 5: Results of node classification over training percentages.
Note that the scale of y-axis is not the same for every dataset (e.g.
the scale for DBLP is higher than that of Foursquare).

• Metapath2Vec[2] is a heterogeneous graph embedding method
that binds the random walk to follow a set of manually defined
meta-paths. Similarly, embeddings are learned via SkipGram.
The meta-paths U-C-P-C-U, P-C-T-C-P (Foursquare), A-M-D-M-
A and A-M-C-M-A (Movie) are chosen similar to [9]. For DBLP,
the meta-paths are P-A-P and A-P-V-P-A, as in [8]. Finally, P-A-P
and P-S-P are chosen as meta-paths for ACM, following [24].

• JUST[9] is a heterogeneous graph embedding method that biases
the randomwalk to first balance between selecting homogeneous
edges (such as P-P in DBLP), or heterogeneous edges (e.g. A-P).
Second, they sample node types uniformlywhen choosing hetero-
geneous edges. SkipGram is used to learn node representations.

• Bidirectional RandomWalkswere introduced in [10] to over-
come the intrinsic bias of traditional random walks that causes
low-degree node to appear mostly at the very beginning of a
walk, where only a smaller context window is available. By start-
ing two independent random walks from each node and joining
them as one, the starting nodes can also enjoy a full context
window and thus better embeddings. While [10] combines these
walks with a heterogeneous variant of SkipGram, we evaluate
them with the original SkipGram algorithm.
Note there are other heterogeneous graph embedding methods

that replace SkipGram with a different learning component, such as
HIN2Vec [3], or that propose heterogeneous variants of it, such as
Metapath2Vec++ [2] andMARU [10]. However, we devote this work
to the analysis of different random walks as a sampling technique,

Figure 6: Normalized node classification results w.r.t. SchemaWalk.

with the belief that the most expressive of them may then be com-
bined with different learning approaches. Therefore, a comparison
with the aforementioned methods that involve more sophisticated
learning components is out of the scope of this work.

Implementation Details. For SchemaWalk, we tune the de-
cay hyper-parameter α using node classification on the Movie
dataset with a search over α ∈ [0.1, 0.9] and a step of 0.1. Ac-
cordingly, α is fixed as 0.8 for all datasets. We adopt the same
hyper-parameter values as DeepWalk [17] for our methods and
the baselines. Specifically, we set walk length l = 40, number of
walks λ = 80, window sizew = 5, and dimension size d = 128. For
bidirectional walks, we treat λ as the number of walk pairs and
l as the combined length of a walk pair, in order to preserve the
same amount of training data across all methods. We report the
average results for 10 random data splits. For each split, the hyper-
parameters are tuned with 5−fold cross validation and evaluated
on 20% held-out testing set. The code and datasets are available on
GitHub1.

4.2 Node Classification Task
The task is a multi-label node classification, where every node is
associated with one or more labels in the label set L. To evaluate the
quality of the resulting embeddings, we train a one-vs-all logistic
regression with the same scoring function in [17]. For training, 10
training data splits/sets, each divided up at 8 different percentages
[0.1, 0.8], are used to show the learning behavior and robustness
of each model. For evaluation, the remaining 20% of the data is
held out as a testing set. Micro-F1 and Macro-F1 are selected as the
evaluation metrics for multi-label classification.

Figure 5 shows the performance of five random walk techniques
on four heterogeneous networks. The results show generally com-
parable performances of the random walks, with SchemaWalk
achieving the best to second best results across the datasets.

First, we observe DeepWalk and Bidirectional walks perform
competitively on Movie and ACM. That suggests the homogeneous
structure (i.e. regardless of node and edge types) of these networks
is more relevant to classify nodes correctly. While the heteroge-
neous knowledge seems more crucial in Foursquare and DBLP that
SchemaWalk and Metapath2Vec yield noticeably better perfor-
mance. Thereby, we conclude that for scenarios where homogeneous
exploration of the structure is enough, approaches such as DeepWalk

1https://github.com/AhmedESamy/SchemaWalk
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Figure 7: Doughnut charts of the edge types distribution over the
generated random walks.

perform well. As the heterogeneous knowledge becomes imperative,
heterogeneous network embedding approaches can be essential.

Second, SchemaWalk renders better results on DBLP than the
heterogeneous network embedding baselines — as well performs
consistently well on the other datasets. Particularly, it is notable
in Figure 5 that SchemaWalk reaches high accuracy scores on
DBLP with 10% training data, and maintains highest Micro-F1 and
Macro-F1 scores across the training percentages. Moreover, viewing
Figure 6, SchemaWalk is consistently high over all datasets. For
instance, Metapath2Vec achieves the best result on Foursquare, but
the worst on Movie. That’s because Metapath2Vec’s performance
is conditioned on the quality of the chosen meta-paths and their
suitability for the specific label set. Similarly, DeepWalk achieves
the best performance on Movie, but the worst on DBLP. On the
contrary, SchemaWalk exhibits stable performance on all graph
structures, compared to both the homogeneous and heterogeneous
network embedding baselines.

Finally, SchemaWalk outperforms JUST in all experiments.
This observation validates the intuition that edge type-based sam-
pling is a more flexible and more promising embedding approach
for metapath-less heterogeneous network embeddings.

4.3 Qualitative Analysis of SchemaWalk
In this section, we provide a qualitative analysis and comparison of
SchemaWalk with respect to DeepWalk. We do this through the
following visualizations.

Sampling Distribution over Edge Types. Figure 7 shows dis-
tributions of the edge types across random walks generated by
DeepWalk and SchemaWalk. The edge types distributions are
visualized as doughnut charts based on DBLP and Movie datasets.
Examining the DBLP-based charts, it is noticeable the key differ-
ence between each walk type. As SchemaWalk aims for exploring
the network schema, the chart shows a near-uniform distribution

Figure 8: Heatmap charts of the correlations between the target and
context node types, within SkipGram’s context window, on DBLP.

over the edge types; except for the edge type "Paper-Paper" that is
slightly missing in the DBLP graph. Whereas, the distribution of
the edge types is skewed in the case of DeepWalk. DeepWalk biases
the sampling towards the high degree nodes (or the frequent edge
types) in the graph. For example, nodes of type "Venue", and their
associated edge type "Paper-Venue" are considerably less frequent,
thereby they are less sampled by DeepWalk.

As for the Movie dataset, the graph presents structural issues,
such as missing edge types (e.g. Movie-Movie) or highly-skewed
distribution of edge types (e.g. Actor-Actor). Thus, sampling over
the Movie graph is particularly challenging for SchemaWalk to
achieve uniform distribution. For example, the starvation phenome-
non is clear for the edge type "Actor-Actor"; While DeepWalk gives
highest probability to the "Actor-Actor" being the most frequent
edge type, SchemaWalk struggles to sample the edge type ade-
quately. That’s caused by the highly unbalanced distribution of
"Actor-Actor" with only 18% of the actors. Hence, SchemaWalk
samples this edge type the least, in contrast to DeepWalk.

Correlations betweenNode Types. To further understand the
difference between DeepWalk and SchemaWalk (as homogeneous
versus heterogeneous network sampling approaches), we draw
heatmaps for the co-occurrences of the node types within the Skip-
Gram’s context windows. Figure 8 shows the heatmaps for both
approaches on DBLP. Examining the figure, both approaches show
high correlations for all node types with node-type P ("Paper")
where P appears as a context node. That’s an expected behavior
given that node-type P is a hub node in the DBLP’s network schema
(Figure 1(b)). However, we can see a difference when viewing node-
type P as a target node. SchemaWalk shows the same correlation
between the target node-type P and each of other edge types, which
highlights the property of uniform-distribution over the edge types
where P is involved. In contrast, DeepWalk shows a high variance
and favors P-A and P-T over P-V. That’s justified by the property
of DeepWalk to favor high frequency.
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Figure 9: Classification results of SchemaWalk over different α .

Moreover, observing the columns where node-types V and T
are context nodes in both charts (Figure 8), we can see that with
DeepWalk, node-type V has a low chance to be chosen as a context
node, while node-types A and T have high chances. Whereas, the
three node types have very similar chances to be chosen in the case
of SchemaWalk.

These observations consolidate our intuition and motivation;
that SchemaWalk aims for exploring the network schema, while
DeepWalk targets the homogeneous structure of the graph, typically
favoring high degree nodes (or frequent edge types).

4.4 Impact of the Decay Parameter α
Figure 9 illustrates the impact of parameter α on the quality of the
resulting node embeddings on the DBLP and Movie networks. As
the random walk unfolds, the value of α controls the decay rate
of the sampling probability of each edge type. Particularly, higher
decay rates lead to a more uniform sampling of the edge-types
within each single context window, as sampling the same edge type
multiple times in rapid sequence is discouraged. As α approaches
1, this kind of local skew is allowed, while Eq.3 guarantees that
the global sampling distribution is still uniform. During the experi-
ments, the decay parameter α was tuned on the Movie dataset via
a search over α ∈[0.1, 0.9] with a step of 0.1. In Figure 9, we report
the testing results on the task of node classification.

Investigating the results, the performance on DBLP reaches its
peak when α = 0.4, then falls afterwards as the value approaches 1.
While on Movie, the performance is rather steady, and improves
slightly when α > 0.6. Except for Movie dataset, we observe in
the experiments that α ∈ [0.4, 0.6] usually gives the best results,
assuming the other hyper-parameters are set to their default values.
That suggests achieving a modest uniform sampling of the edge
types within SkipGram’s context window gives best performance
for most of networks. Reducing the value of α can still be helpful
to compensate when some nodes lack certain edge types within
their direct neighborhoods.

The analysis is, yet, different for the Movie dataset; reducing α
seems to worsen the starvation issue described in Section 3.3. As
the edge types A-A and M-M are severely missing, the urge for
SchemaWalk to compensate exponentially increases with smaller
α , therefore leading to oversampling the missing edge type. Notably,
the performance gain is still not significant regardless of the value of
α ; this is because node classification onMovie seems to benefit more
from exploring the graph in a homogeneous manner, as discussed
earlier. For evaluation, α was set to 0.8 on all datasets.

Table 2: Node classification for SchemaWalkHO VS. SchemaWalk

DBLP Movie
Micro Macro Micro Macro

SchemaWalkHO (β = 0.1) 84.5 84.5 35.5 28.4
SchemaWalkHO (β = 0.01) 87.5 87.4 51.8 48.4
SchemaWalk 87.6 87.5 52.1 48.9

4.5 Performance of SchemaWalkHO
Table 2 compares the performance of SchemaWalkHO versus
SchemaWalk in the node classification task on the DBLP and
Movie datasets. It is notable that walking on the higher-order graph
rather than the original negatively impacts performance, in some
cases dramatically. Furthermore, when the hyperparameter β is
reduced, bringing the higher-order graph closer in structure to the
original, the classification performance climbs back towards the
level of the original SchemaWalk.

The theoretical advantage of SchemaWalkHO is its ability to
maintain the uniform sampling distribution of edge types even
when some of these present skewed distributions in the original
graph. However, these results indicate that this advantage is offset
by harmful side-effects.

One side-effect may be the appearance of nodes that are more
than k hops away from the target node within the size k SkipGram
window — therefore diluting the notion of proximity that is key
to the use of SkipGram for node embeddings. When the value of
β is low, this phenomenon should happen infrequently on graphs
with well-distributed edge types. Indeed, when β = 0.01, the perfor-
mance on DBLP climbs back to near-optimal scores. On the other
hand, the phenomenon still continues, despite the small value of β ,
when a node is lacking certain edge types from the network schema,
as SchemaWalkHO tries to overcome this edge type deficit and
avoid starvation. This is the case with M-M and A-A edges in the
Movie dataset. The results show a wider performance gap on this
dataset even with low β .

This indicates that “completing” deficient neighbourhoods based
on structural patterns (such as number of connecting paths in
our implementation) may represent a bad approximation of the
underlying phenomena, at least on the Movie dataset. The lack of
certain edge types may in fact be caused not by the incompleteness
of the dataset, but may rather be itself part of the input signal,
providing valuable information about the role of certain nodes in
the graph. It is therefore important for future work to examine
ways to capture these differences and deficiencies in connectivity,
while still retaining the advantage that uniform sampling of edge
types provides in certain circumstances.

4.6 Limitations of SkipGram in Heterogeneous
Graph Embedding

The main focus of this work is to propose and compare novel ran-
dom walk techniques, rather than alternative learning components
to SkipGram. Nonetheless, we provide a comparison with HIN2Vec
[3], that was performed as part of this research.

As shown in Table 3, HIN2Vec [3] exhibits better results for clas-
sification than SchemaWalk over almost all datasets. HIN2Vec
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Table 3: Node classification results for SchemaWalk VS. HIN2Vec

SchemaWalk HIN2Vec
(SkipGram)

DBLP Micro 0.876 0.876
Macro 0.875 0.876

ACM Micro 0.833 0.903
Macro 0.827 0.901

Movie Micro 0.521 0.54
Macro 0.489 0.51

does not employ the same SkipGram model as SchemaWalk and
DeepWalk [17]. Rather, it proposes a different learning model that
explicitly represents the heterogeneous knowledge via meta-paths
and learns by predicting the right meta-path/relation for any two
pair of input nodes. Therefore, the model has a bigger learning ca-
pacity with a direct access to the heterogeneous knowledge, while
SkipGram is oblivious to the node types of the target-context pairs
and to the edge types that connect them. We also observe that
HIN2Vec does not impose strong assumptions on the random walk
when exploring the graph. Therefore, we argue that much of their
performance superiority results from the learning component. The
same has been also observed with other state-of-the-art approaches.
For example, althoughMetapath2Vec [2] employs meta-path guided
random walks, considerable improvements are achieved only when
the authors combine them with an heterogeneous variant of Skip-
Gram. Similarly, though MARU [10] proposes a bidirectional ran-
domwalk for a comprehensive exploration of graphs, its advantages
are only observed when combined with heterogeneous SkipGram.
Viewing the last observation as well as Figure 6 and Table 3, we
hereby conclude that adequate understanding/sampling of the net-
work structure combined with an explicit learning/modeling of the
complex knowledge in HINs is a highly recommended research direc-
tion for heterogeneous network embedding.

5 RELATEDWORK
Research on learning representations in heterogeneous networks
has been on a huge rise. Many embedding methods address the task
as a stochastic optimization problem [2, 3, 5, 15]. For instance, some
earlier work have tried to predict binary relations between two
types of nodes in heterogeneous graphs [1, 20]. TransE [1] learns
entities and relation vectors where the relation vectors translate
between entity types based on their co-occurrences, thus starting a
research trend on knowledge graphs [15]. While PTE [20] extends
LINE [21] to heterogeneous networks by extracting bipartite net-
works based on the edge types. To learn node embeddings, they
then capture the one-hop neighborhood. However, in targeting
binary relationships, these approaches overlook complex semantics
of relationships between nodes. More recently, several methods
explicitly harness the heterogeneous structure i.e. node types by
using meta-paths [3, 6, 8]. Metapath2vec [2] extends DeepWalk
[17] by restricting the random walk to follow a pre-defined set of
meta-paths. While HeteSpaceyWalk [6] proposes a spacey random
walk to approximate the stationary distribution of the meta-path
based random walks. The performance of these methods, although

generally satisfactory, is nevertheless conditioned on the quality
of the selected meta-paths — that are typically hand-crafted by do-
main experts. Approaches as HIN2Vec [3] and HINE [8] avoid the
latter issue by defining meta-paths under specific criteria such as
maximum length. Longer length yet leads to an exponential compu-
tational increase [3] while the choice of the length may still affect
the final performance [8]. To avert using meta-paths altogether,
JUST [9] biases the random walk so that all node types are selected
in a fair equal distribution. However, their notion of random walk
is rather aggressive; for example a palindrome semantic sequence
such as Author-Paper-Author is not possible to sample. Thereby,
JUSTmay overlook key heterogeneous structures. More akin to us,
HeteSpaceyWalk [6] leverages the network schema to guide their
spacey random walk. They nevertheless aim for a balance between
maintaining uniform distribution and favoring the most previously
sampled, for the node types. Distinctly, SchemaWalk balances the
edge type choices in the network schema and flexibly compensate
for missing edges under a chosen edge type.

Finally, there are other methods such as HeGAN [7], which ap-
plies adversarial learning to HIN embeddings, Metapath2Vec++ [2],
MARU [10], and HIN2Vec [3]. These methods address the learning
component. This work, however, furthers the sampling process,
namely, the random walk, and learns via the SkipGram model [12].

6 CONCLUSIONS
In this paper, we propose SchemaWalk, a flexible random walk
for heterogeneous network embedding. The core insight of our
work is that with the absence of knowledge about the importance
of each node and edge type in heterogeneous graphs, the random
walker should aim for a fair sampling with no assumptions over
the node/edge types. Additionally, we argue that exploration based
on the edge types can be more flexible and granular as opposed to
sampling based on the node types, which may miss vital semantics
in heterogeneous networks. Thus, we exploit the network schema
to realize uniform sampling distribution over the edge types. Fi-
nally, we identify the phenomenon of starvation in heterogeneous
networks and propose SchemaWalkHO to tackle this issue. Eval-
uation on multi-label node classification demonstrates the robust
performance of SchemaWalk in real-life heterogeneous networks,
while also hinting at the unsuitability of SkipGram for embedding
heterogeneous networks. Also, we provide a detailed qualitative
analysis on SchemaWalk versus DeepWalk. The final insights
and conclusions can be summarized as follows: (1) heterogeneous
networks present rich structures that homogeneous embedding
methods may be inadequate at capturing; (2) unbiased exploration
of the edge types can offer a more fine-grained and general ap-
proach to heterogeneous network embedding compared to node
type-based alternatives; (3) the homogeneous nature of SkipGram
makes it less suitable for heterogeneous network embedding.
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A APPENDIX
Embeddings Visualization. Based on TSNE [22], Figure 10 de-
picts 2-dimensional node representations for DeepWalk (on the left)
and SchemaWalk (on the right). The embeddings are computed on
the DBLP and ACM datasets, and colored according to their ground-
truth labels. As shown earlier in section 4.2, SchemaWalk sur-
passes DeepWalk on both datasets. However, DeepWalk still shows
competitive performance on ACM. Viewing Figure 10, we observe
that SchemaWalk’s embeddings yield a more well-defined clus-
tering that aligns with the label set, in comparison with DeepWalk.
As both approaches perform comparably on ACM, the clusterings
appear similar. These observations support our earlier findings on
node classification; Learning embeddings in DBLP appears to ben-
efit more from the heterogeneous knowledge that’s provided by
SchemaWalk. While on the ACM graph, there is less emphasis
on such knowledge that sampling in homogeneous way should be
sufficient.
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DeepWalk (DBLP) SchemaWalk (DBLP)

DeepWalk (ACM) SchemaWalk (ACM)

Figure 10: 2D visualization of the node embeddings for DeepWalk (on the left) and SchemaWalk (on the right) where the first and second rows
are the DBLP and ACM datasets, respectively.
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