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The field of mobile, wearable, and ubiquitous computing (UbiComp) is undergoing a revolutionary integration of machine
learning. Devices can now diagnose diseases, predict heart irregularities, and unlock the full potential of human cognition.
However, the underlying algorithms are not immune to biases with respect to sensitive attributes (e.g., gender, race), leading
to discriminatory outcomes. The research communities of HCI and AI-Ethics have recently started to explore ways of
reporting information about datasets to surface and, eventually, counter those biases. The goal of this work is to explore
the extent to which the UbiComp community has adopted such ways of reporting and highlight potential shortcomings.
Through a systematic review of papers published in the Proceedings of the ACM Interactive, Mobile, Wearable and Ubiquitous
Technologies (IMWUT) journal over the past 5 years (2018-2022), we found that progress on algorithmic fairness within the
UbiComp community lags behind. Our findings show that only a small portion (5%) of published papers adheres to modern
fairness reporting, while the overwhelming majority thereof focuses on accuracy or error metrics. In light of these findings,
our work provides practical guidelines for the design and development of ubiquitous technologies that not only strive for
accuracy but also for fairness.
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1 INTRODUCTION
Tasks once thought impossible or reserved exclusively for humans are now within our grasp thanks to the
integration of Machine Learning (ML) in ubiquitous computing (UbiComp). Algorithms deployed on ubiquitous
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devices were typically used to recognize human activities [45], facilitate indoor localization [137], detect breathing
phases [120] and infer sleep quality [63]. Today, we are also witnessing an increasing trend toward high-stakes
applications. For example, detecting Atrial Fibrillation (AFib) [82], diagnosing COVID-19 infection [11], predicting
fertility windows [84], and even improving cognitive performance [25]. Independence of healthcare access,
individualized health-promoting interventions, and easier dissemination of medical information, to name a few,
make up the list of benefits that algorithmic decision-making (i.e., the use of algorithms and mathematical models
to automate the process of decision-making in an efficient and objective manner) has enabled [86]. However, the
data and algorithms powering these advancements are not immune to biases. With great ethical opportunities
come ethical risks, and, similarly to humans, ML algorithms are susceptible to biases rendering their decisions
“unfair” [4, 10, 13, 105].

The research community of Fairness, Accountability and Transparency in ML (FAccT, formerly FAT/ML)
defines fairness as a principle that “ensures that algorithmic decisions do not create discriminatory or unjust impacts
when comparing across different demographics (e.g., race, sex)” [6]. Real-world cases of “unfair” ML algorithms
abound. For example, Kamulegeya et al. [56] found that neural network algorithms trained to perform skin lesion
classification showed approximately half the original diagnostic accuracy on black patients compared to white
patients. At the same time, people of color are consistently misclassified by health sensors such as oximeters as
they were scientifically tested on predominantly white populations [121].

As we shall see throughout this critical review, fairness in UbiComp remains relatively unexplored due to the
primary focus on accuracy, and particularities of the community. But what makes UbiComp unique compared
to other communities? UbiComp data and models have certain particularities, oftentimes not shared with the
broader scholarly discourse on ML and AI Ethics (Figure 1). For example, UbiComp typically deals with small-scale
studies, proof-of-concept datasets often collected by the authors in-the-lab or in-the-wild, while the broader
ML community frequently utilizes popular, medium- to large-scale benchmark datasets such as the UCI Adult,
the German Credit, the COMPAS, and the Diversity in faces datasets [29, 62, 67, 92]. Such data are collected
once and are immutable, opposite to UbiComp data that are mutable and, by definition, continuously collected.
Contrary to the tabular format of such datasets, UbiComp data are mostly sequential in nature, with biases being
harder to surface. In other words, while it is relatively straightforward to distinguish a person’s skin tone from a
picture, it is much harder to do so from oximetry measurements, necessitating the collection of supplementary
metadata, such as demographics; as UbiComp strives to blend technologies in the background, biases are blended,
too. However, with a conscious approach, it is possible to create ML models that are both accurate and fair. As
the field of ML continues to evolve, the UbiComp community needs to stay vigilant, ensuring that UbiComp
technologies are designed and deployed in a responsible and ethical manner.
Building on the footsteps of Human-Computer Interaction (HCI) and FAccT communities, we set out to

understand how fairness has been discussed in UbiComp and identify pathways for ensuring that UbiComp
technologies do not cause any harm or infringe on any individual rights [24]. Such research communities recently
started to explore ways of reporting fairness in data and models to surface and, eventually, counter biases. In
this work, we intend to spark a discussion on how the UbiComp community defines, measures, and assesses
fairness. While the community has perhaps indirectly adopted (and adapted) the meaning of fairness to capture
UbiComp’s particularities, the question remains though: Where does UbiComp fairness overlap with other
communities, and, more importantly, where does it lag behind?
To answer this question, we performed a literature review spanning five years (2018-2022) and 523 papers

published in UbiComp literature. We targeted papers published in the Proceedings of the ACM Interactive, Mobile,
Wearable and Ubiquitous Technologies (IMWUT), a high-quality journal series capturing the emerging trends in
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the UbiComp community and bearing an h-index of 58, placing it among the top-3 publications in HCI.1 In so
doing, we made three contributions:

• We conducted the first review of fairness in ML for UbiComp, where we screened 523 and critically reviewed
49 IMWUT papers (𝑁𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 = 49) published at IMWUT between 2018 and 2022 (§4).

• We found that: a) Only 5% of all IMWUT papers reported fairness assessments (included papers); b) from
this proportion of papers, 24% implement fairness enhancement mechanisms, making up only a limited
fraction of all IMWUT papers (1%); c) Yet, we surfaced biases across several sensitive attributes, otherwise
scattered in UbiComp literature; d) Included papers predominantly used performance evaluation metrics,
rather than fairness ones, in their fairness discourse. Yet, we confirmed assessment gaps in regression and
multi-class classification cases; e) Similar to other communities, defining fairness in UbiComp was far from
straightforward. Ethical risks and opportunities laid at the heart of this decision; f) Fairness in UbiComp
was often viewed through the lens of generalizability, taking the form of ablation studies, in-the-wild
deployments, and personalization; g) Measurement inaccuracies and concept drift in audio, video, image,
and sensor data led to performance differences across demographics; and h) IMWUT papers suffered from
a lack of diverse datasets, concealing biases in the absence of heterogeneous demographics (§5).

• In light of these findings, we made ten recommendations to the UbiComp community pertaining to the
integration of fairness into the entire ML pipeline of UbiComp studies (§6).

The remainder of the paper is organized as follows. Section 2 examines review and position papers related to
machine learning fairness and responsible artificial intelligence. Section 3 outlines fairness definitions and metrics.
Section 4 describes the methodology used to conduct the literature review, and Section 5 presents the results
obtained. Lastly, Section 6 discusses the findings and limitations of the review, and offers recommendations for
fair reporting in the UbiComp community.

2 RELATED WORK
Next, we situate our critical review in previous fairness literature covering three broad areas: a) far-reaching
yet broad surveys; b) surveys targeted to specific domains; and c) call-for-action works focusing on diverse,
representative, and balanced research samples.

Broad Fairness Surveys.Addressing algorithmic bias in ML has been a longstanding issue [16], despite its recent
surge. A number of comprehensive surveys shed light on data and model biases across domains and compared
potential mitigation solutions. For example, Caton and Haas [16] and Pessach and Shmueli [109] discussed
fairness metrics and categorized mitigation approaches into a widely accepted framework of pre-processing,
in-processing, and post-processing methods independently of the application domain. Wan et al. [134] focused
exclusively on in-processing modeling methods such as adversarial debiasing, disentangled representations, and
fairness-aware data augmentation, while Pessach and Shmueli [109]’s work provides an overview of emerging
research trends, including fair adversarial learning, fair word embeddings, fair recommender systems, and
fair visual description. More recently, Mehrabi et al. [90] explored data-to-algorithm (e.g., representation bias,
measurement bias, aggregation bias, etc.), algorithm-to-user (e.g., popularity bias, user interaction bias, evaluation
bias, etc.), and user-to-data (e.g., historical bias, temporal bias, content production bias, etc.) biases, and how
these biases are generally encountered in ML practice. Along these lines, Le Quy et al. [69] surveyed available
datasets for fairness research, including financial, criminological, healthcare, social, and educational datasets.
Yet, despite these surveys’ considerable contributions, they tend to be of generic nature and rarely discuss data,
models, and applications related to an individual community.

1https://scholar.google.co.uk/citations?view_op=top_venues&hl=en&vq=eng_humancomputerinteraction
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MACHINE LEARNING FAIRNESS MOBILE & WEARABLE COMPUTING 

Benchmark, standardized datasets In-the-wild, author-collected datasets

Collected once Collection ongoing

Tabular, low-dimensional data Sequential, passively-sensed data

Unchangeable, immutable Changeable, mutable

Medium-, large-scale data Small-scale, proof-of-concept data

Human-distinguishable biases Hard to distinguish biases

Classification/Ranking problems Regression/Classification problems

Fig. 1. Conceptual differences betweenML Fairness andUbiComp datasets.UbiComp data andmodels are oftentimes
inherently different from those commonly used by the ML fairness community. Figure style inspired by [108].

Targeted Fairness Surveys.Another line of work took a deep dive into well-defined domains (e.g., recommender
systems, social networks, healthcare, etc.). A number of works targeted specific ML paradigms, for example, by
focusing on fairness for ML for graphs [23], on exploring notions of fairness in clustering [21], and on studying
fairness in recommender systems [72]. Another group of works targeted specific unprivileged groups or high-
stakes domains. For example, Olteanu et al. [104] reviewed the literature surrounding social data biases, such as
biases in user-generated content, expressed or implicit relations between people, and behavioral traces, while in
[127], the authors focused specifically on gender bias in Natural Language Processing (NLP). On a different note,
Abdul et al. [1] featured emerging trends for explainable, accountable, and intelligible systems within the CHI
community, also discussing notions of fairness. Closer to our work, Mhasawade et al. [94] discussed ML fairness
in the domain of public and population health, and Xu et al. [144] explored algorithmic fairness in computational
medicine, which only covers a subset of the broad, interdisciplinary UbiComp research domains.
WEIRD Research. Last, another strand of fairness work is concerned with what is coined as WEIRD research.
WEIRD research refers to a common criticism in the social sciences that much of the research is conducted on a
sample of participants that is Western, Educated, Industrialized, Rich, and Democratic (WEIRD). In particular, a
comprehensive study conducted by Henrich et al. [50] in 2010 revealed a significant bias in sample populations.
The study found that most research samples come from WEIRD populations, which represent only 12% of the
global population but account for 96% of research samples. This criticism suggested that using such a narrow and
unrepresentative sample of participants can limit the generalizability of the findings to the broader population.
Over the past decade, the CHI community, which focuses on human-centered design, and the FAccT community,
which aims to democratize ML and advance the development of responsible artificial intelligence, have become
more aware of the potential biases introduced by WEIRD samples. For instance, Linxen et al. [75] conducted a
meta-study on CHI findings from 2016 to 2020, reporting that 73% of CHI studies are based onWestern populations,
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representing less than 12% of the population worldwide, invariably making CHI “WEIRD”, as it is based on the
knowledge and ethics of people who are Western, Educated, Industrialized, Rich, and Democratic. Similarly, a
recent meta-study on FAccT proceedings from 2018 to 2021 extracted research topics and identified community
values, placing fairness and ML, bias in word embeddings, bias in vision, and racial disparities among the ten
largest sub-communities within the conference [68]. Yet again, as highlighted in Introduction (Section 1) in line
with prior work [68], “off-the-shelf” benchmark datasets are encountered in the majority of published work,
while only a ∼ 10% of FAccT papers use original, empirical datasets, let alone UbiComp data.

It is evident that research communities other than UbiComp have recently started to explore ways of reporting
data and models in a fair manner to surface and, ultimately, address encountered biases. Yet, the state of fairness
in the UbiComp community remains unknown, as, at the time of writing, there exists no other survey or position
paper in the intersection between UbiComp and fairness. Are our data susceptible to biases? Do our models
discriminate against certain demographics, and if so, how do we make them right? These are just a handful of
questions we set to provide answers to in this work.

3 BACKGROUND: FAIRNESS DEFINITIONS & MEASUREMENT
Fairness is a social construct that defies a simple definition [101]. In the legal domain, fairness entails the “protec-
tion of individuals and groups from discrimination or mistreatment with a focus on prohibiting behaviors, biases
and basing decisions on certain protected factors or social group categories” [122]. Social sciences often consider
fairness “in light of social relationships, power dynamics, institutions, and markets” [98], while quantitative
fields (e.g., computer science, statistics) view fairness as a mathematical problem of “equal or equitable allocation,
representation, or error rates, for a particular task or problem” [101].

Viewed through the lens of quantitative science, ML research has broadly grouped fairness into three categories:
group fairness, individual fairness, and subgroup fairness [90]. Group fairness ensures some form of statistical
parity (e.g., in terms of positive outcomes or errors) for individuals belonging to different protected groups (i.e.,
groups characterized by a sensitive attribute, such as gender or race) [30, 66]. On the other hand, individual
fairness ensures that “similar” individuals receive similar outcomes [30, 66]. Subgroup fairness aims to exploit the
best of both worlds by ensuring some form of statistical parity but holding this constraint over a large collection
of subgroups to prevent fairness gerrymandering [57, 58]. While proponents of individual fairness have argued
that it should be preferred to other categories for determining fairness, individual fairness has also received
criticism: (1) counterexamples show that similar treatment is insufficient to guarantee fairness; (2) similarity
metrics are susceptible to encoding implicit human biases; (3) similarity definition assumes prior moral judgments;
and (4) the incommensurability of relevant moral values makes similarity metrics infeasible for many tasks [36].
Considering these limitations, we refer to both group and subgroup fairness when the term fairness is used.

In quantifying group fairness, there exist two opposing perspectives: “We’re All Equal” (WAE) and “What You
See Is What You Get” (WYSIWYG) [38, 147]. The WAE perspective assumes equal ability across groups to perform
the task, and thus it is closely linked with treating equals equally, whereas the WYSIWYG viewpoint assumes
that the data themselves reflect a group’s ability with respect to the task, and thus, unequals should not be treated
equally. Each perspective is quantified by different fairness metrics [41]. The WAE perspective, for example,
uses demographic parity metrics, such as disparate impact and statistical parity difference, while the WYSIWYG
perspective uses equality of odds metrics, such as average odds and average absolute odds difference. The two
schools of thought find some common ground in equality of opportunity metrics, such as false negative rate,
false positive rate, and error rate ratios, among others, where the choice of appropriate fairness metric is often
guided by the question “What is the consequence of the predictive outcome?”. In quantifying individual fairness,
“similar” individuals should be treated similarly. Dwork et al. [30] formalized this intuition by considering ML
models as mappings between input and output metric spaces and defining individual fairness as their Lipschitz

, Vol. 1, No. 1, Article . Publication date: March 2023.



6 • Yfantidou, et al.

Automatically query IMWUT proceedings

mobile computing AND machine learning AND fairness

523 retrieved articles

Manually filter papers performing bias
assessment based on sensitive attributes

gender age

sexual
orientationreligion race

marital status

Manually extract pre-agreed information

49 included articles

Title Year BiasAttribute

2022

2020

2019

2022

gender

race

race

age

Quantitative and qualitive analysis

Fig. 2. Illustration of the literature review methodology. A high-level overview of the process, including the querying,
manual extraction, and filtering, and one of the main results. Note that for readability purposes, we present a simplified version
of our query and data extraction. Our query retrieves ∼ 55% of all IMWUT publications, while our eligibility assessment
filtering ends up with 49 papers (∼ 9% of retrieved papers). We notice that only a very small fraction of all IMWUT papers
looks at fairness issues, with only a small deviation across years.

continuity. Specifically, a Lipschitz continuity condition requires that for any two individuals 𝑢1 and 𝑢2, their
distance (as defined by a given distance metric) is proportional to the difference between the classifier’s output for
𝑢1 and the classifier’s output for 𝑢2. In other words, if x and y are similar according to the distance metric, then
their classifier outputs should also be similar, and vice versa. The distance metric on the input space though is
crucial to the definition as it encodes individuals’ similarity, and the choice was originally deferred to regulatory
bodies or civil rights organizations rather than researchers or practitioners [97]. Naturally, different works use
different definitions of algorithmic fairness, and although these appear internally consistent, they may also be
mutually incompatible, as many quantitative fairness metrics cannot be satisfied simultaneously [38].
Despite the contradictory nature of fairness [38], the common element across traditional, even opposing

definitions and metrics is that fairness is defined and assessed with respect to one or more sensitive (a.k.a.
protected) attributes, such as gender, race, or age. Specifically, such attributes enable post hoc analyses to evaluate
model performance across demographics and, ultimately, model fairness. This is indeed how fairness has been
interpreted within the machine learning community [4, 10, 13], but viewed through the lens of the traditional
definition, the UbiComp community is significantly lagging behind.

4 METHODOLOGY
Next, we delineate our methodology for conducting this systematic review (§4.1 and §4.2) and provide our
positionality statement (§4.3).

4.1 Conducting the Literature Review
We followed an established protocol for conducting systematic reviews introduced by Kitchenham and Charters
[61] to ensure the quality of included works and limit the initial retrieved papers. At least three authors were
involved at each step to minimize the effects of bias and priming. In accordance with this protocol, we initially
identified the need for a systematic review, as discussed in Section 1, namely to explore where UbiComp fairness
overlaps with traditional fairness definitions and, more importantly, where it lags behind. Figure 2 provides a
high-level overview of the process.
Paper Identification & Screening. UbiComp is a relatively new area in Information and Computer Science
that crosses several fields, ranging from HCI, Hardware and Software Systems, and Knowledge Discovery and
Data Mining. For the scope of this review, we focused on the Proceedings of the ACM on Interactive, Mobile,
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(Abstract: ("mobile*" OR "wearable*" OR "smartwatch*" OR "smartphone*" OR "track*") OR
Title: ("mobile*" OR "wearable*" OR "smartwatch*" OR "smartphone*" OR "track*") OR
Keywords: ("mobile*" OR "wearable*" OR "smartwatch*" OR "smartphone*" OR "track*")) 
AND 
("deep learning" OR "machine learning" OR "artificial intelligence" OR "classification" OR "regression") 
AND 
("fair*" OR "bias*" OR "parity" OR "ethic*" OR "responsible AI" OR "RAI" OR "discriminat*" OR "non-discriminat*"
OR "equal*" OR "inclusiv*" OR "transparen*")

Fig. 3. The query utilized for recovering relevant papers from the ACM Digital Library. Terms related to UbiComp
are highlighted in green, ML in orange, and fairness in purple.

Wearable and Ubiquitous Technologies (IMWUT), a premier journal in the UbiComp community, also placed
among the top-3 publications in HCI. For the search process, we utilized the ACM Digital Library, focusing on
papers that were published in the last five years (between 2018 and 2022) to capture emerging trends in fairness
and UbiComp research. We also considered a broader search on Google Scholar but opted not to include it due
to scale concerns (e.g., the query “machine learning fairness” returns approximately 279,000 results on Google
Scholar) and the fact that indexed papers may not have undergone peer review. Apart from year filtering, for
the most part, we did not limit our search to meta-data, such as titles, keywords, and abstracts, but rather we
expanded it to any searchable field, including full text. That excludes the first part of the query, which tries to
match terms such as wearable(s) or mobile(s) only in the papers’ meta-data, as seen in Figure 3.
Query Definition. For the definition of our query, we followed similar terminology with relevant review papers
in the fairness literature [16, 69]. Additionally, according to Fjeld et al.’s analysis of prominent AI principles
documents, [35], “the fairness and non-discrimination theme is the most highly represented theme in our dataset,
with every document referencing at least one of its six principles: “non-discrimination and the prevention of
bias”, “representative and high-quality data”, “fairness”, “equality”, “inclusiveness in impact”, and “inclusiveness
in design”, mostly included in our query’s coverage. To capture the industrial perspective, we consulted the
Responsible Artificial Intelligence (RAI) white papers issued by large tech companies. Specifically, Google’s2
and Meta’s3 RAI principles talk about “fairness and inclusion”, Amazon’s4 RAI principles promote “diversity,
equity, and inclusion” through “detecting bias”. Similarly, Nokia’s5 RAI fairness pillar talks about “fairness,
non-discrimination, accessibility, and inclusivity”, and Intel’s RAI pillars mention “enabling ethical and equitable
AI”. Thus, an iterative refinement process resulted in the query shown in Figure 3.
Eligibility Assessment. To further validate our query, we manually inspected all publications from the latest
IMWUT proceedings (Volume 6, Issue 4, published in January 2023) (𝑁 = 56) to identify eligible papers for
inclusion (see inclusion and exclusion criteria below). In total, we identified seven relevant publications, all
of which were also returned by our query. This process was irrelevant to our final paper retrieval (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [96] flow diagram is pictured in Figure 4)
and served validation purposes only. To ensure the high quality and relevance of the included papers, we defined
appropriate exclusion criteria that helped us determine the included papers:
(1) Papers that do not provide a quantitative assessment of at least one empirical or artifact contribution in

ubiquitous computing (UBI);

2https://ai.google/responsibilities/responsible-ai-practices/?category=fairness
3https://ai.facebook.com/blog/facebooks-five-pillars-of-responsible-ai/
4https://aws.amazon.com/machine-learning/responsible-machine-learning/
5https://www.bell-labs.com/institute/blog/introducing-nokias-6-pillars-of-responsible-ai/
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Retrieved from 
IMWUT
N = 611 

Assessed full-text 
for eligibility

N = 523 

Published before 
2018 or after 2022
N = 85 (14%)

Published in the 
past 5 years

N = 526

Duplicate entries
N = 3  (<1%) 

Included in the 
literature review

N = 49

Matched exclusion 
criteria
N = 474 (91%)

Identification Screening Eligibility Inclusion

Fig. 4. PRISMA flow diagram for paper inclusion. Out of the 611 papers retrieved by our query after the screening,
only 9% (𝑁 = 49) did not check any exclusion criterion and thus were included in the literature review. The majority of the
retrieved papers were false positives, highlighting the importance of the eligibility assessment.

(2) Papers that do not include a quantitative assessment of bias or performance discrepancy in their evaluation
with regard to sensitive attributes, such as age, gender, race, disability, religion, and sexual orientation,
among others (FAIR);

(3) Papers that discuss different domains, such as natural language processing or computer vision without
incorporating a UbiComp component (DOM);

(4) Papers that refer to bias in a different context, such as the bias-variance trade-off or the bias parameter in
neural networks (CON).

Inclusion & PRISMA Statement. Finally, the sequential execution of the steps above, as depicted in Figure 4,
led to our review’s included papers. Overall, we screened 523 papers after date filtering and duplicate elimination.
After carefully screening these papers, we excluded 474 based on our exclusion criteria. In detail, 31 papers did
not provide any quantitative assessment of a UbiComp contribution (UBI: 6.5%), 394 papers did not provide any
fairness assessment (FAIR: 83.1%), 2 papers did not discuss a UbiComp component (DOM: <0.5%), 42 papers
referred to bias in a different context (CON: 8.9%), and finally, 5 papers were excluded for other reasons (OTHER:
1.1%). Hence, we included 49 papers in our review6.

4.2 Methodological Limitations
While we have made every effort to ensure broad coverage of papers relevant to fairness in UbiComp studies, our
search for literature might not be comprehensive and exhaustive. However, covering IMWUT as a prominent
academic venue for ubiquitous computing research allowed us to capture emerging trends. Besides, we intended
to provide insights and research directions to the IMWUT community; therefore, we narrowed down our research
to IMWUT proceedings as opposed to the broader community by including the proceedings of, for example,
PerCom, SenSys, MobiSys, or medical journals such as JMIR. We also acknowledge that despite our best efforts to
pick literature-driven keywords and manually validate the retrieved results, the output might well have produced
both false positives and false negative results.

6To foster reproducibility, upon acceptance, we intend to release the review data and codebooks
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4.3 Positionality Statement
Understanding researcher positionality is essential to demystifying our lens on data collection and analysis [39, 49].
We situate this review paper in a Western country (REDACTED FOR REVIEW) in the 21st century, writing as
authors who primarily work as academic and industry researchers. We identify as two females and four males,
and our shared backgrounds include HCI, ML, and ubiquitous computing.

5 RESULTS
In the discussion of our results, we looked into bias in both models and data in the included papers. Model bias
refers to systematic errors that are introduced into ML algorithms due to the underlying assumptions in the data,
algorithms, or the learning process itself, leading to unfair or unequal outcomes for certain sensitive groups. In
the following sections, we explore the state of fairness in the UbiComp community (Section 5.1), the ethical risks
and opportunities in the domain and how they can inspire the choice of fairness metrics (§5.2), and ultimately,
we capture alternative notions of fairness that the UbiComp community has perhaps indirectly adopted (and
adapted) to capture the particularities of the domain (§5.3). Data bias refers to errors occurring because certain
user groups, or generally elements, within a dataset are more heavily weighted and/or represented than others. A
biased dataset does not accurately represent a model’s target domain, causing skewed outcomes, low performance,
and systematic errors. In the sections below, we also discuss reported or historical biases relevant to the domain’s
data modalities (§5.4) and explore diversity in UbiComp datasets and research teams (§5.5).

5.1 What is the State of Fairness in UbiComp?
Before delving into details about fairness assessment, enhancement mechanisms, and metrics documented in
the included papers, we summarize the approaches adopted by the UbiComp community in Table 1. The table
presents all included papers, categorized per application domain, sensitive attributes, and fairness mechanisms
and metrics. In summary, out of the 523 retrieved papers, a small portion of 9% (𝑁𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 = 49) were included in
the review, which in turn make up only 5% of all IMWUT publications between 2018 and 2022, highlighting the
timeliness and necessity of this work.

Out of all papers published at IMWUT between 2018 and 2022, only a small portion of 5% (included
papers) adhered to modern fairness reporting.

Takeaway #1

To identify appropriate application domains, we consulted the past four years (2019-2022) of UbiComp tracks
and sessions to identify commonalities in discussed themes. We grouped together tracks’ themes between years
based on their similarity and relevance to the included papers. This process led us to the identification of ten
domains: Health; Human-Activity Recognition; Behavioral Sensing & Emotion; Cognition & Attention; Motion,
Gaze, Gesture & Touch; Sound, Voice & Hearing; Mobility & Navigation; Privacy & Security; Localization, and
Miscellaneous. We encountered all but one theme (localization) in the included papers, which is not unreasonable
given localization’s usually low-stakes applications and, thus, less relevance to fairness. Health was the most
commonly encountered domain, accounting for more than one in four papers, while Cognition & Attention was
the least common, accounting for only ∼ 6% of included papers.
Figure 5 provides an overview of the discussed domains, as captured by the papers’ keywords. It also serves

as a validation to the domains’ categorization, as many categories (e.g., Health; Human-Activity Recognition;
Motion, Gaze, Gesture & Touch; Sound, Voice & Hearing and Privacy & Security) also appear in the keyword
clouds. Deep learning, ML, and human activity recognition are among the most frequently overlapping keywords
(colored in dark grey). Over-represented keywords in the retrieved papers (colored in green) include mobile
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Table 1. A summary of the included papers categorized by application domain, fairness enhancement mechanism, sensitive
attribute, and bias metrics. High-stakes health application papers are the most active in the UbiComp community regarding
fairness. While all included papers talk about fairness with respect to one or more sensitive attributes, the vast majority do
not offer enhancement mechanisms.

APPLICATION DOMAIN FAIRNESS MECHANISM SENSITIVE ATTRIBUTE FAIRNESS METRICS PAPERS
Health (26.5%) Preprocessing Gender [150]

Age Accuracy

Health Condition MAE [74]
In-processing Socioeconomic Status Precision, Sensitivity, Specificity [116]
None Gender Accuracy, AUC-ROC, F1, Sensitivity,

Specificity, MAPE, Error rate
[43, 46, 55, 142,
151]

Age Accuract, AUC-ROC, Sensitivity,
Specificity, Pearson’s r, Error rate

[7, 55, 138, 142,
151]

Health Condition Accuracy, AUC-PRC, AUC-ROC, F1,
Precision, Sensitivity, Specificity,
RMSE

[46, 47, 151, 152]

Physiology F1, Sensitivity, Specificity [46]
Race AUC-ROC, MAE [55, 78]

Privacy & Security (12.2%) None Age Error rate [40]
Health Condition Precision, P-value [3, 132]
Physiology Accuracy [44, 117, 145]
Religion [44]

Human-Activity Recognition (10.2%) Pre-processing Gender F1 [124]
Age
Physiology

In-processing Gender F1 [119]
Gender Accuracy [148]
Physiology F1 [153]None
Miscellaneous MSE [64]

Behavioral Sensing & Emotion (10.2%) Pre-processing Gender Accuracy [59]
Age Accuracy, MAE [59, 77, 91]
Nationality Accuracy [59]

None Gender Accuracy, Coefficient of determina-
tion

[60, 89]

Sound, Voice & Hearing (10.2%) Pre-processing Gender Accuracy [125]
None Gender Error rate, Mel cepstral distortion [5, 73, 136]

Age Error rate [136]
Physiology Accuracy, MAE [71]
Nationality Error rate [5]

Motion, Gaze, Gesture & Touch (8.2%) None Gender Accuracy [76, 81]
Age
Health Condition Error rate [53]
Physiology Accuracy [76, 133]

Mobility & Navigation (8.2%) Pre-processing Gender Accuracy [135]
Age
Physiology

In-processing Gender Accuracy, AUC-ROC, F1 [154]
Age
Socioeconomic Status

None Gender F1 [100]
Age F1
Miscellaneous Accuracy [143]

Miscellaneous (8.2%) Pre-processing Miscellaneous Accuracy [155]
None Gender Required rate of return [93]

Age Required rate of return
Marital Status Required rate of return
Physiology P-value [20]
Language Error rate [111]

Cognition & Attention (6.1%) None Age RMSE [118]
Physiology MSE [139]
Miscellaneous Accuracy, AUC-ROC, Precision, Sen-

sitivity, MAE, MSE, Pearson’s r
[76, 140]
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Fig. 5. Keyword differences of retrieved (left) and included (right) papers. Frequent keywords in both retrieved and
included papers are colored in dark grey. Over-represented keywords in the retrieved papers are colored in green, while
over-represented keywords in the included papers are colored in pink. Even within UbiComp, the privacy, audio, and vision
communities are trailblazers in ML fairness.

sensing, wearables, Internet of Things (IoT), Radio-frequency identification (RFID), and self-supervised learning.
Over-represented keywords in the included papers (colored in pink) include mobile health, Post-traumatic stress
disorder (PTSD), acoustic sensing, computer vision, privacy, and gesture recognition.

5.1.1 Fairness Enhancement Mechanisms. For each application domain, we categorized its papers based on three
fairness enhancement mechanisms [16, 109]: a) pre-processing; b) in-processing; and c) post-processing mechanisms.
It is often infeasible to eliminate all sources of unfairness and guarantee fairness. Yet, the goal is to surface and
mitigate biases as much as possible through fairness enhancement mechanisms.
Pre-processing mechanisms involve altering the training data before feeding it into a ML algorithm. Within
UbiComp, preliminary but effective mechanisms include fair data representation. For instance, during data
collection, Liaqat et al. [74] equally included both healthy subjects and subjects with Chronic Obstructive
Pulmonary Disease (COPD) in their dataset for respiratory rate monitoring using smartwatches, leading to
non-significant differences in model performance across health condition. Similarly, Zhou et al. [155] employed a
fairness-aware client selection mechanism for federated learning to ensure equal representation for subjects with
worse connectivity.7 Post data collection, Su et al. [125] performed data balancing, conditioned on the sensitive
attribute, managing to narrow the impact of gender voice differences on their speech recognition model. Similarly,
a strand of work explored data splitting, conditioned on the sensitive attribute (gender, age, BMI, skin tone,
country, and health condition) to enable model personalization [59, 77, 91, 125, 150]. More advanced mechanisms
suggest modifying feature representations so that a subsequent classifier will be fairer. For example, Wang et al.
[135] improved the performance of their activity detection model by normalizing the window-level features
across gender and physiology, yet their model remained dependent on sensitive attributes. Similarly, in line
with prior work [79], Su et al. [124] utilized disentangled representations, aiming to isolate relevant activity
7While Internet connectivity is not a sensitive attribute per se, it has been linked with socioeconomic status, race, nationality, gender, and
age, all of which are sensitive attributes [102].
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patterns from redundant noises such as gender, age, and physiological differences, reducing the effect of such
covariate factors. However, they did not manage to completely separate the activity signals from the redundancy,
attributing it to the diversity limitations of Human-Activity Recognition datasets.

In-processing mechanisms involve modifying the ML algorithms to account for fairness during training. In the
included papers, Shahid et al. [116] altered their logistic regression model for Post-traumatic stress disorder (PTSD)
screening to include sensitive attributes in its parameters, having observed statistically significant inter-group and
intra-group differences based on gender and socioeconomic status. Their alteration led to a statistically significant
improvement in performance across groups. On a similar note, Sheng and Huber [119] devised a multi-task loss
function consisting of activity, subject, and gender loss. However, they noticed unbalanced performance, with the
performance on gender attribute learning being around 11% lower than the performance on the other two tasks.
Finally, in quantifying the causal effect of individual mobility on health status, Zhang et al. [154] considered
certain sensitive attributes, such as age and socioeconomic status, as confounding variables in their causal model,
after establishing that such attributes can affect the correlation between mobility and health. However, they noted
that due to dataset privacy constraints in reporting demographic variables, potential unobserved confounding
variables, such as occupation, employment, and education, might have been missed, highlighting the conflict
between fairness and privacy [18].

Post-processing mechanisms involve altering the output scores of the ML model to make decisions fairer.
However, due to the relatively late stage in the learning process in which they are applied, post-processing
mechanisms commonly obtain inferior results [141]. They are also considered too invasive or discriminatory since
they deliberately damage accuracy for some subjects to compensate others [109]; hence they are less frequently
preferred in practice. Perhaps not surprisingly, such mechanisms are not present in the included papers.
Despite the notable efforts of the aforementioned pioneering works in the UbiComp community, 3 out of

4 included papers did not report any fairness enhancement mechanism, regardless of the presence of bias in
their models. This is partly due to a lack of consideration for fairness-related harms, but it is also connected
with the nature of several UbiComp works: artifact contributions, proof of concept, and early-stage technology
development, where performance is prioritized.

Papers implementing fairness constitute a small portion of included papers (24%), which, in turn,
make up only a limited fraction of all IMWUT publications (1%).

Takeaway #2

5.1.2 Sensitive Attributes & Biases. The categorization of sensitive attributes is inspired by the EU Charter of
Fundamental Rights that prohibits any discrimination based on any ground such as sex, age, race, ethnic or social
origin, genetic features, language, and religion or belief, among others [31]. In line with such declarations and
prior fairness work [109], UbiComp works investigate a variety of sensitive attributes individually or combined:
gender, age, physiology (e.g., height, weight), health, language, nationality, socioeconomic status, religion, race,
occupation, and marital status, as seen in Table 1.

Nevertheless, some attributes are better represented than others in the included papers, with gender and age
being at the top (mentioned in almost 9 out of 10 included papers), followed by physiology and health condition
(mentioned in 4 out of 10 included papers), as seen in Figure 6b. Surprisingly, attributes with long-history of
discrimination in ML, such as race, language, and nationality [67, 70, 85], are rarely encountered in the UbiComp
literature, with only two papers discussing racial discrepancies in model performance. Yet, UbiComp is far from
immune to such discrepancies. Sjoding et al. [121] uncovered racial and ethnic biases in pulse oximetry, while
Hutiri and Ding [52] reported language biases in speech recognition.
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Deployment: In-the-wild
Bias: B  (35,56%)

Deployment:
In-the-lab
Bias: U  (17,78%)

Deployment: In-the-lab
Bias: B  (37,78%)

Deployment: Both
Bias: B  (4,44%)

(a) Frequency of in-the-lab versus in-the-wild deployments along with
fairness assessment results.

Sensitive Attribute U B
Gender
Age
Physiology
Health Condition
Language & Nationality
Socioeconomic Status
Religion
Race
Other
Occupation
Marital Status 1

2
2
2
1
2
2
5
9
15
13

1
3
4
6
9

(b) Sensitive attributes along with
reported fairness results.

Fig. 6. Bias results across deployment settings and sensitive attributes. The figures visualize the fairness assessment
results reported in the included papers against deployment setting (left) and sensitive attributes (right). “B” indicates
a bias towards one or more sensitive attribute(s), while “U” indicates an unbiased model. In 6a (left), the deployment
environment distribution is relatively balanced, but the reported fairness assessments differ with in-the-wild studies reporting
significantly less unbiased results. In 6b, gender, age, and physiology are amongst the most frequently assessed attributes,
while, surprisingly, race and language are understudied. Note that a single paper might assess more than one sensitive
attribute; hence the sum may exceed the number of included papers (𝑁 = 49).

In line with such findings, our review of UbiComp’s work highlighted biases in ML models across all sensitive
attributes and a wide range of UbiComp applications. Gender biases have been reported in monitoring sleep
posture with wireless signals [148], opioid usage tracking [46], diaphragmatic breathing monitor based on
acoustic signals [43], and speech recognition via accelerometer sensors [125]. Age biases have been reported
in medication adherence monitoring through gait assessment [150], fatigue estimation via smartphone tapping
frequency [7], mobility purpose and route choice inference [100], and neural activation prediction [55]. Biases
based on physiological measurements have been reported by Li et al. [71] in fine-grained activity sensing (e.g.,
eye blinking, finger tracking) using acoustic signals against people of small stature, by Wang et al. [136] in vital
sign monitoring through acoustic sensing against obese or overweight people, and by Griffiths et al. [44] in
image processing with binocular thermal cameras against people of non-average height. Similarly, a model for
early detection and burden estimation of AFib under-performed for long-term AFib patients compared to their
healthy counterparts [151], while a wearable-based clinical opioid use tracker showed bias against chronic opioid
users [46]. Regarding less explored sensitive attributes, Griffiths et al. [44] encountered model biases in user
authentication via binocular thermal cameras for hijab wearers, a proxy for religion, while Ruan et al. [111]
uncovered language biases in speech and keyboard text entry for non-English speakers. It is worth noting that all
included papers explore notions of group fairness rather than individual and subgroup fairness (detailed in §3).

Across application domains, gender, age, and physiology and health conditions are commonly taken
into account, while race, nationality, and language are unfairly overlooked.

Takeaway #3
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5.1.3 Fairness Metrics. Metrics for performance evaluation monopolize UbiComp fairness assessment and
reporting as shown in Table 1. Classification metrics, such as Accuracy, Area under the ROC Curve (AUC-ROC),
and F1-Score, etc., and regression metrics, such as Root-mean-square Error (RMSE), Mean Absolute Error (MAE),
and Mean Absolute Percentage Error (MAPE) highlight the interest of the UbiComp community for such tasks.
There exist two challenges, though, with UbiComp’s take on fairness: Firstly, how does one define a threshold in
performance evaluation above which a model is considered unfair across sensitive attributes? For instance, if an
AFib detection model has 85% accuracy on healthy adults and 80% accuracy on the elderly, should it be considered
fair or unfair? This challenge holds for the entirety of ML fairness research, as there are seldom clear-cut answers.
Secondly, how does one perform fairness assessment in regression or multi-class classification scenarios, both
wildly understudied areas in the fairness domain compared to binary classification [95]? This challenge especially
holds for UbiComp. To see how, consider that 1 out of 2 included papers did not discuss binary classification.
To answer the first question, one could employ a statistical hypothesis test, such as the Student’s t-test, for

comparing samples’ performance across sensitive attributes, a practice also adopted by a portion of the included
papers. Yet the choice of a statistical test is far from straightforward, each incorporating strict assumptions. For
example, a key assumption of the paired Student’s t-test is that the observations in each sample are independent,
which is not the case in k-fold cross-validation, a common practice in ML model evaluation, leading to an incorrect
calculation of the t-statistic and a misleading interpretation of the results and p-value [28]. Better alternatives
proposed include McNemar’s Test or 5 × 2 cross-validation and its refinements [28, 99]. Note that more than 1 in
4 included papers (27.7%) did not use any statistical significance testing in their assessment. Another limitation
of performance-based assessment of fairness is the assumption that performance optimization and fairness
criteria always overlap. For instance, an AFib detection algorithm might be optimized for accuracy [12], but in
fairness assessment, one might also want to ensure equal false negative and false positive rates across groups.
An alternative to statistical significance testing on performance metrics, also adopted by the FAccT community,
is the usage of fairness metrics; namely several measures, such as demographic parity or equalized odds, that
enable the detection of bias in one’s data or model, as briefly discussed in Section 3. Once a fairness metric is
obtained, it is common practice to apply the “4/5 rule” or “80% rule”, which states that “the selection rate of any
group should be not less than 4/5 than the one of the group with the highest selection rate” [15]. This refers
to the guidelines established by the US Equal Employment Opportunity Commission (EEOC) [128], which are
frequently cited as one of the few legal frameworks that rely on a specific definition of fairness, particularly the
concept of demographic parity. Yet, there is no single fairness definition, metric, or “fair” threshold that will
universally apply to different applications. The rule should only be used as a “rule of thumb” and is dependent on
the application domain. For example, in high-stakes applications (e.g., health), would we consider “acceptable”, or
fair, a model for arterial oxygen saturation estimation with 80% accuracy on Asian, Black, and Hispanic patients
and 95% accuracy on White patients—even though it abides by the “4/5 rule”? It is worth noting that we did not
identify any fairness metrics in the included papers, indicating the disjointedness between the UbiComp and the
FAccT communities.
Regarding the second question, nearly half of the included papers (47%) engage in regression or multi-class

classification tasks, such as respiratory rate detection and human-activity recognition, respectively. Yet, the most
common ML paradigm explored in fairness research is binary classification [95], with most fairness metrics and
enhancement mechanisms specifically targeted to such tasks. In one of the few works about fair regression,
Agarwal et al. [2] introduced two definitions of fairness in regression: statistical parity, which asks that the
prediction be statistically independent of the sensitive attribute, and bounded group loss, which asks that the
prediction error restricted to any sensitive group remain below some predefined threshold. A popular way to
quantify fairness in regression is to compare the outcome distribution across sensitive attributes using the Kull-
back–Leibler divergence [54], or Kolmogorov-Smirnov test for goodness of fit [88]. If the test fails to reject the null
hypothesis that the distributions come from the same population, it is considered fair. Otherwise, it is determined

, Vol. 1, No. 1, Article . Publication date: March 2023.



Beyond Accuracy : A Critical Review of Fairness in Machine Learning for Mobile and Wearable Computing • 15

that there is at least one sensitive group whose distribution does not come from the same population. However,
this does not reveal which distributions are different (i.e., which group the model is biased against), and what
are the characteristics of such differences (e.g., differences in mean, variance, skewness), requiring a subsequent
analysis [2]. Similarly, popular ML fairness libraries, such as AIF3608 and FairLearn9, at the time of writing, do
not include any regression-specific fairness metrics’ implementations. In multi-class classification scenarios,
computing “standard” fairness metrics such as equalized odds and demographic parity can be challenging due to
the lack of a clear definition of “positive” and “negative” classes. To address this issue, one feasible solution is to
transform the problem into multiple binary classification problems and then aggregate the results. More recent
approaches include the Combined Error Variance (CEV) and Symmetric Distance Error (SDE) metrics [8, 9] to
quantitatively evaluate the class-wise bias of multi-class classification models.

No UbiComp paper (from the included papers) uses modern fairness metrics, likely due to the lack
of widely available regression and multi-class classification metrics.

Takeaway #4

5.2 Model Consequences: Ethical Risks versus Opportunities
It is no longer a matter of debate that ML has and will have a major impact on UbiComp, and by extension,
on society; human authentication [145], early detection and burden estimation of AFib [151], respiratory rate
monitoring [151], and opioid use tracking [46] are only a handful of examples that reinforce this argument. The
discussion has now shifted to determining the extent and specifics of this impact. In other words, it is given that
ubiquitous ML will have an impact on society; what is now being questioned is the specifics of who will feel the
effects, how, where, and when they will be felt.
To concretize these questions, the Scientific Committee of the AI4People10 has categorized the chief ethical

opportunities offered by artificial intelligence in “four fundamental points in the understanding of human dignity
and flourishing” [37]: “who we want to become” (enabling self-realization), “what we can do” (enhancing human
agency), “what we can achieve” (increasing individual and societal capabilities), and “how can we interact with
each other and the world” (cultivate societal cohesion). Ethical opportunities within UbiComp span across all
four points: UbiComp-based automation of mundane tasks, such as gait-based human authentication [145],
speech transcription [111], or gesture recognition [76] may easily mean more time spent more intelligently
(self-realization). UbiComp-based augmentation of human intelligence, such as cognitive load measurement [140],
or cognitive performance prediction [140] may enable humans to do more, better, and faster (human agency).
UbiComp-based innovations in medicine, such as PTSD screening [116], medication adherence monitoring [150],
or post-operative complications prediction [152], may reinvent society by radically enhancing what humans are
collectively capable of (individual and societal capabilities), while UbiComp-supported cooperative work, such as
social context inference [89], may support societal cohesion and collaboration (societal cohesion).
However, we must also consider the ethical risks associated with inadvertent overuse and deliberate or

unintended misuse of UbiComp technologies, stemming, for example, from lack of awareness, conflicting interests,
greed, or malicious intent. Simply put, ethical risks are the most likely and predictable negative consequence
of any action or inaction. And while performance optimization is frequently fueled by the potential of ethical
opportunities, fairness assessment is also driven by ethical risks. Oftentimes, fairness considerations in ML
systems are influenced by the question: What is the consequence of the predictive outcome? The answer to this

8https://aif360.mybluemix.net/
9https://fairlearn.org/
10An Atomium–European Institute for Science, Media and Democracy initiative.
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question can drive the choice of suitable fairness definitions and metrics but is far from straightforward. For
instance, in the case of AFib detection, a false negative outcome might prove deadly. Yet, “deploying a system with
a high false alarm rate can add anxiety to people” [151]. Similarly, in predicting postoperative complications in
pancreatic cancer patients, a false negative outcome can deprive a patient of much-needed care. However, “many
false positive errors, [...] means the patients without complications are incorrectly predicted to be at high risk. As a
result, clinicians may decide to provide pre-habilitation to reduce their risk of surgical complications or even cancel
the surgery. However, pre-habilitation delays surgery and the patients might miss their opportunity for successful
recovery and surgery is the only cure for the cancer.” [152]. On the contrary, in speech-based human identification
scenarios, false positive outcomes are critical in preventing unauthorized access, as “existing voiceprint-based
authentication often suffers from various voice spoofing attacks” [40].

Prioritizing predictive outcomes becomes even more challenging once perceived through their sociotechnical
context. Oftentimes UbiComp technologies are built and evaluated as if they were fully autonomous, while in
reality, they operate in a complicated sociotechnical system moderated by institutional structures and human
stakeholders (the “framing trap” [115]). For instance, in opioid use tracking [46], and drug-seeking behavior
sensing [47] applications —both encountered in the included papers— the consequence of a predictive outcome
depends on the assumption of punitive or restorative justice [48]. According to traditional punitive justice,
punishment serves as a deterrent for wrongdoing, and a means to alter behavior. However, restorative justice
takes a different approach, recognizing that punishment alone does not repair the harm caused to the community
and relationships. Additionally, restorative believes that relying solely on punishment can result in individuals
becoming dependent on external factors rather than internal self-control to modify their behavior [130]. As an
example, if a ubiquitous substance abuse detection technology is adopted by a restorative system, a false negative
outcome might derive an individual struggling with drug addiction from crucial access to rehabilitation services.
For instance, “if such a device were found to be reliable, it could be used to monitor early treatment response and
therefore could allow clinicians to more rapidly optimize patient care” [47]. On the contrary, if the exact same
technology is employed as part of a punitive system, then a false negative outcome might lead to a wrongful
accusation or conviction.
Nevertheless, fear, ignorance, and misplaced concerns should not inhibit the UbiComp community from

innovation and realizing ethical opportunities for individual and societal good. On the contrary, mindful use of
ML is conscious of our commonalities and differences across sensitive groups, as well as the factors within and
outside the community’s control, and serves as a framework to act with a sense of responsibility and fostering trust.

Given UbiComp’s high-stake applications, fairness reporting and justification help prioritize tradeoffs
between ethical risks and opportunities.

Takeaway #5

5.3 How does UbiComp Capture Alternative Notions of Fairness?
Previously, we have established that only a small fraction of IMWUT works (5%) follow conventional fairness
definitions, where fairness is defined with respect to one or more sensitive attributes. Yet, we believe such
definitions do not do full justice to the community’s work, which strives for “fairer” models, perhaps not across
sensitive attributes, but across differing experimental conditions. In particular, we noticed that, in evaluating
new UbiComp systems, artifacts, or applications, the community aims for generalizable and robust models by
performing ablations studies, comparing deployment settings, and personalizing models for users and groups.
As an indication, in the retrieved papers, almost one out of two papers (44%) reported an ablation study or a
deployment setting comparison in their results, while in the included papers, 57% did so.
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Ablation Studies. In an ablation study, one or more components of the model are systematically removed or
modified, and the performance of the model is evaluated after each change. By comparing the performance of
the original model with the performance of the modified models, researchers can determine the importance
of each component and gain insights into the functioning of the model across diverse conditions, ensuring its
generalizability and robustness. In the included papers, ablation studies take the form of performance evaluation
comparisons based on: user-related components, device-related components, environmental components, experi-
mental components, and domain-specific components. In particular user-related components include user motion
and orientation during data collection in sleep posture monitoring [148], breathing monitoring [43], gesture
recognition [76], user identification [117], and heart activity monitoring [142], as well as aesthetics, such as
hair or clothing in fine-grained activity sensing [71], breathing and vital sign monitoring [43, 136], and user
identification [44, 145]. Device-related components include device type, sampling rate, and operating system,
as well as device placement and orientation in activity and gaze tracking [53, 71], vital sign monitoring and
physiological sensing [78, 136], speech recognition via built-in sensors and speech synthesis [73, 125], and user
behavior sensing [60]. Environmental components include ambient noise, light, and temperature that might affect
data quality of acoustic [40, 71, 136] or video [44, 78, 133, 139] signals, respectively, or random passers-by that
might affect model performance on the individual for human identification [145]. Regarding experimental setup,
few included papers studied the effect of equipment placement (i.e., distance, angle) and characteristics (i.e.,
range) on the model’s robustness in activity sensing [71] and vital sign monitoring using acoustic signals [43, 136].
Apart from such common components, the choice of components to consider in an ablation study is highly
domain-dependent. Domain-specific components have no limitations and can range from screen size in scrolling
interaction experiments [81] to food structure in food-related artifact development [20].

Deployment Setting. Beyond ablation studies, a study’s deployment setting, ranging from in-the-lab to in-the-
wild, can significantly impact its outcomes. While laboratory settings can provide controlled environments for
experimentation, they may not accurately reflect the complexities of the real world in which the applications
are deployed. As a result, in-the-wild (or in-situ) studies have emerged as an alternative approach, focusing on
evaluating the situated design experience of UbiComp. Such studies provide insight into how new ubiquitous
technologies are adopted in real-world settings [110]. Figure 6a shows the distribution of in-the-lab and in-the-
wild studies in the included papers, along with their reported fairness assessment results. We see that perhaps
not surprisingly, in-the-lab studies prevail (∼ 55%), which can be explained by the nature of numerous IMWUT
papers presenting cutting-edge artifacts or early-stage model development work. Nevertheless, ∼ 38% of included
papers conduct in-the-wild studies, and a small fraction of papers (∼ 7%) compare and report results for both
deployment settings. An interesting point to be made here is that while 4 out of 10 in-the-lab studies do not
identify biases in their models, this number falls to 0.5 in 10 for in-the-wild studies. This confirms our intuition
that controlled environments might conceal biases that would emerge once a model is deployed in the real world.

Personalization. In 20% of the papers included, personalization was reported as a commonly used approach for
gaining insights on performance differences between individuals. In particular, several works trained separate
personalized models for inference on a single subject [5, 117, 150] or a group of subjects sharing a common char-
acteristic. For instance, Liu et al. [77] built personalized models for different age groups “illustrating differences in
communication patterns across age demographics that can impact model performance”. Similarly, Mendel et al. [91]
utilized age-specific models for predicting the right moment for providing mobile safety help, as “different ages in
the sample have a significant influence on supportable moment predictions”. Liu et al. [78] developed personalized
models based on skin tone for camera-based, non-contact photoplethysmography, as “previous work had already
highlighted [skin tone and gender] issues with the Plane-Orthogonal-to-Skin [method]”. Su et al. [125] developed
gender-specific models for speech recognition, as “women’s voice is generally thinner and higher in pitch”, while
Zhang et al. [153] explored BMI-based models for detecting eating activities via a multi-sensor necklace, due to
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“differences in movement patterns while eating, change in the distance of the proximity sensor from the neck, and
difference in posture during the eating activity”.

Modern fairness reporting aside, the UbiComp community strives for generalizability by conducting
and reporting ablation studies, in-the-wild vs. in-the-lab experiments, and personalized models.

Takeaway #6

5.4 Is UbiComp Susceptible to Data Biases?
UbiComp is inherently multimodal; even the relatively small subset of included papers contained heterogeneous
modalities of input data such as audio, video, images, text, and sensor data (e.g., accelerometer, gyroscope,
temperature, electrodermal activity (EDA) sensors). These different modalities may be related or complementary
and can provide a more complete and nuanced representation of a given phenomenon than any one data modality
alone.
Biases in audio (used by 18% of included papers) are well-reported in fairness research communities [52, 87, 129].
UbiComp posed no exception, with such biases surfacing from the included papers. Several works discovered
biases in acoustic signals dependent on body size, a potential proxy for gender, physiology, and race. Specifically,
Li et al. [71] generically reported “higher respiration [detection] error [...] due to [...] weaker chest motions and
smaller body size”, while Gong et al. [43] specifically reported bias against women due to “different physiological
structures”, which led to “the reflective surface of women [being] smaller than that of men, which encodes less
information”. Similarly, Wang et al. [136] found that acoustic signals for heartbeat monitoring were biased against
people with larger BMI, as “larger BMI [would] make the thoracic muscle thicker and block the weak heartbeat
signals”.
Biases in video and image (used by 20% of included papers) are also well-studied in fairness literature [27, 103].
Within UbiComp, Kalanadhabhatta et al. [55] attributed performance discrepancies in computer vision models to
data-related factors regarding participants’ identity, gender, age, race, ethnicity, and Fitzpatrick skin type [34].
In line with this discourse, Griffiths et al. [44] identified video biases related to physiology, such as height, and
appearance features such as hair or head covering, potentially proxies for gender and religion, respectively.
Specifically, they encountered certain issues during video capture: “As [the tallest participants] moved closer to
the cameras, both participant’s heads moved above the viewing range of the [...] camera”; or “[the algorithm] often
measured the participant at their forehead rather than the top of their head [...] due to [the participant’s] long, thick,
curly hair”; and finally, “ when [the participant] turned away from the camera and only her hijab was visible [the
algorithm] was unable to detect her presence as different from the background”.
Some of these biases are easier to distinguish as demographic information is integrated into the data. For

example, gender, age, physiology, and race may be inferred from video, while gender, language, and possibly
age and race may be inferred from speech signals. However, sensor signals —the most prevalent data modality
used by the UbiComp community— are more challenging and equally susceptible to data biases. Prior research
has reported racial and ethnic biases in pulse oximeters [121]. Additionally, gender biases may be a concern for
electrocardiogram (ECG) quality, given that certain ECG metrics, such as the PR interval, heart rate, QRS duration,
and lead voltages, exhibit gender-based differences [146]. Even the most inconspicuous sensors, such as heart rate
and acceleration sensors, are shown to be correlated with health, fitness, and demographic characteristics [123].
Biases in sensor signals (used by 51% of included papers) also surfaced during our review. These biases could
be attributed either to measurement inaccuracy or concept drift phenomena in signal patterns (i.e., distributions
of data change over time, making machine learning models less accurate without updates [80]). For example,

, Vol. 1, No. 1, Article . Publication date: March 2023.



Beyond Accuracy : A Critical Review of Fairness in Machine Learning for Mobile and Wearable Computing • 19

Females

White

Higher-Education

Employed

USA

10 10 20 30

Race

Education

Employment

Country

Age

Gender

20 0304050

N=42 (86%)

(a) #Papers reporting sensitive attributes (b) Mean sample size per sensitive attribute and user group

M = 71 USERS

N=20 (41%)  M = 31 YEARS

N=6 (12%)

N=10 (20%)

N=7 (14%) Μ = 208 USERSΜ = 152 USERS

N=42 (86%) 42 PAPERS36 PAPERS

M  = 136 USERS

40 70 80 90 100 110 120 130 140 150 160 21050 60

M  = 112 USERSM = 88 USERS

M  = 144 USERSM = 92 USERS

MAX  = 66 YEARS

60

Fig. 7. Analysis of sensitive attributes and data size. The bar plots show the percentage of papers reporting certain
sensitive attributes (left) and the (mean) sample size in the subset of papers reporting that attribute (right). Note that for
age and country, we report the mean sample age and the number of papers originating from the USA, respectively. Sample
demographics reporting is not standardized and frequently incomplete, with race, employment status, and education being
the least reported sensitive attributes (≤ 20%). While UbiComp samples tend to be gender-balanced, they are still WEIRD, as
they consist of predominantly White, highly-educated, and US-based subjects.

Zhang et al. [150] reported decreased accuracy in gait detection via accelerometer and gyroscope measurements
for elderly users as “Human gait patterns inevitably change with the increase of age. The so-called aging effect
may affect the detection accuracy of [the] system”. Furthermore, Su et al. [125] encountered inaccuracies in
accelerometer-based speech recognition, “Since women’s voice is generally thinner and higher in pitch, [and] it
may be harder for [the] accelerometer to preserve voice feature”. Similarly, in speech synthesis from accelerometer
measurement, Liang et al. [73] also found gender-based differences in the accelerometer’s ability to preserve
the voice feature. In particular, “[...] the frequency bands of male speakers are lower than those of female speakers.
The lower pitch of the male speaker makes it practicable to encompass vocal traits with a lower sampling frequency
with fewer losses on the high-frequency bands”. On a different note, Zhang et al. [153] utilized multiple sensors
(i.e., inertial measurement unit (IMU), proximity, and ambient light sensors) for eating activity detection. They
detected performance discrepancies for participants with large BMI, attributing them to data-related factors,
such as “[...] differences in movement patterns while eating, change in the distance of the proximity sensor from
the neck, and difference in posture during the eating activity”. It is crucial to understand that such biases are not
straightforward to distinguish. On the contrary, they remain hidden, blended into time-series signals, or, even
worse, propagated to inferred high-level signals such as steps, physical activity, and sleep. Such challenges call
for additional care and demographic meta-data for post hoc fairness analysis.

Measurement inaccuracies and concept drift phenomena in captured audio, video, image, and sensor
signals lead to performance discrepancies across sensitive attributes.

Takeaway #7

5.5 How WEIRD is UbiComp?
Inspired by previous call-to-action papers appearing in other communities about diversity in datasets and
sample demographics [75, 113], we performed an analysis of UbiComp datasets with regard to sensitive attribute
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distributions. We chose the WEIRD acronym coined by Henrich et al. [50] as a starting point to inspect how
Western, Educated, Industrialized, Rich, or Democratic UbiComp really is.

Figure 5.5 presents the results of our analysis. The bar plot on the left (a) shows the percentage of papers
reporting certain sensitive attributes: gender, age, race, education, employment, and sample country. The bar
plot on the right (b) gives the mean sample size within each subset of papers reporting that sensitive attribute.
Note that the mean was used, despite its sensitivity to outliers, because the median tends to be less accurate and
more biased than the mean when sample sizes are small. In particular, gender was the most reported sensitive
attribute in IMWUT datasets. 86% of included papers (𝑁 = 42) disclosed this information. Within these 42 papers,
the mean sample size was 136 users, and the mean number of females in the sample was 71. Evidently, the
community has made a step in the right direction by engaging in a conscious effort to achieve more balanced,
diverse, and representative datasets. Yet, there is plenty of room for improvement. The second most-reported
attribute was only reported in 4 out of 10 papers (𝑁 = 20), and the mean sample age within these papers was 31
years old. For comparison, the maximum mean age reported was 66 years. In a world that is rapidly aging [106],
the UbiComp community is predominantly developing and testing on young populations. Such a finding is in line
with prior work, reporting that within the fall detection domain, for example, datasets usually comprise imitated
falls performed by younger people while they are intended for deployment on older people [126]. Finally, only
12% of included papers (𝑁 = 6) mentioned the participants’ race. Within this subset, the mean sample size was
112 users, 88 of which were White (79%). Even though these numbers should be taken with a grain of salt, due to
the small number of papers, it is worth pointing out that not only race is a wildly overlooked sensitive attribute
(see results in Section 5.1.2), but non-White populations are significantly underrepresented within UbiComp
datasets. There is a risk that models underperform for non-White users, but this fact may go unnoticed as there is
no effort to check for it. For instance, Zhang et al. [151] could not assess the impact of skin tone on AFib detection
“due to the unbalanced dataset where the majority (88.7%) of participants were White”.

Confirming IMWUT’s WEIRDness, out of the 42 papers for which the participants’ country (a proxy for
Western) is reported or can be inferred, 36 (86%) engaged with US samples. China (26%) and Switzerland (7%)
completed the top-3 of country representation. Note that the percentages do not sum up to 100 because of
papers with more than one sample country. Concerning education (a proxy for Educated), 20% of included papers
(𝑁 = 10) reported relevant information, with a median sample size of 144 users, 92 of which were college-educated
(80%). This is perhaps not surprising, as in the early stages of development in UbiComp, participant recruitment
frequently takes place within the universities and from the researchers’ close circle. Regarding employment
status (a proxy for Industrialized and Rich), it was only reported in 14% of included papers (𝑁 = 7), with a mean
sample size of 208 users, of which 152 were employed.

Digging deeper into IMWUT’s WEIRDness, we found that out of the 49 included papers, 32 (65%) included at
least one author with a US-based affiliation. To evaluate whether the participants’ countries are more diverse
than the authors’ locations, we analyzed the author affiliations reported in the 42 articles that also contained
information about the participants’ countries. Out of those, only 3 papers (7%) recruited at least part of their
sample from a country different than the authors’ location. In the remaining cases, participants were from the
same country as at least one of the affiliated institutions. These results demonstrate that the vast majority of
IMWUT authors (93%) recruit samples within the country they are located. This proportion is in line —even
though larger— with similar analyses in other communities, such as CHI [75]. This is possibly due to the require-
ments of in-the-lab or artifact-based research common within the UbiComp community.
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While UbiComp populations are balanced in terms of gender, they are otherwise predominantly
young, White, western, highly educated, and employed, calling for more diverse sample recruitment.

Takeaway #8

6 DISCUSSION
In the following, we discuss our main findings (§6.1) and our work’s implications and recommendations for
achieving “‘Fairness by design” in UbiComp work (§6.2).

6.1 Main Findings
By screening 523 papers published at IMWUT between 2018 and 2022, we found that only a small portion of 5%
adhered to fairness reporting, while the overwhelming majority thereof focused on accuracy or error metrics. By
delving into the smaller number of 49 papers, we surfaced biases in machine learning data and models across
several sensitive attributes and application domains that would otherwise remain scattered in the UbiComp
literature. Yet, the identified lack of diverse datasets in IMWUT publications could result in biases remaining
undetected in the absence of heterogeneous demographics. To quantify such biases, included papers primarily
employed performance evaluation instead of fairness metrics, while challenges in fairness assessment were found
in regression and multi-class classification scenarios. Similar to other communities, defining fairness in UbiComp
was not a simple task and involved considering its sociotechnical context, its ethical risks, and opportunities.
Nevertheless, in an effort to employ fairness in practice —sensitive attributes aside— we found that the community
has been striving for generalizability through ablation studies, real-world deployments, and personalization.

6.2 Implications and Recommendations
Drawing from these findings and borrowing from the “Privacy by design” literature [17, 35], we propose a “Fair-
ness by design” equivalent, requiring AI developers and researchers to consider data and model fairness concerns
from the very beginning of any AI project or system design. It is, thus, a proactive and preventative approach that
prioritizes fairness as a core value in the development and implementation of UbiComp technologies, products,
and services. To facilitate the community achieving “Fairness by design”, we next discuss recommendations for
integrating fairness into the entire ML pipeline of UbiComp studies. These recommendations span two fronts,
one concerning the data and the other the model.

Data Collection. Prior to the problem definition, researchers should identify the types of fairness-related harms
relevant to their work (e.g., quality-of-service, allocation, stereotyping, and erasure harms [26]). For example, in
an AFib detection application, quality-of-service harms could occur if the model had a substantially different
performance for different ages, while allocation harms could occur if such difference led to one group unfairly
receiving better care than another. Additionally, it is important to consider the demographic groups —including
historically marginalized groups (e.g., based on gender, race, and ethnicity)— that might be harmed. We should
also consider groups that are relevant to a particular scenario or deployment setting. For example, in a depression
screening application, gender could be relevant as a sensitive attribute due to reported gender differences in the
disorder’s signals [107]. Relevant attributes can be identified either from the theoretical literature or through
fairness literature related to the target application domain.
When defining the problem statement, researchers should also have in mind the generalizability of the

prediction task (e.g., applicable across demographic groups). To achieve that, it is of prime importance to consider
an adequate enough sample size that would enable fairness to be studied (e.g., through sub-group analyses). For
example, an AFib detection system showed poor performance in people with abnormal heart rhythms other
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DATA RECOMMENDATIONS MODEL RECOMMENDATIONS

Identify potential biases and demographic groups that 
might be harmed 

Mitigate training model bias using ML methods that 
adjust for group fairness by using task-specific objectives 
and constraints

Enrich UbiComp (sensor) datasets with diverse sensitive 
attributes

Consider indirect notions of fairness, such as unfair 
resource allocation (energy, connectivity) in federated 
learning, when evaluating emerging ML paradigms

Ensure annotators' diversity during ground truth data 
labeling 

Evaluate model performance across different groups of 
sensitive attributes using multiple fairness metrics

Investigate potential sources of measurement error 
from devices used as objective inputs 

Generate synthetic data covering every sensitive 
attribute and potential intersections

Use data validation and visualization methods across 
sensitive attributes to surface potential data anomalies

Monitor the performance of deployed UbiComp models 
and devices and adjust for data and fairness drift

Fig. 8. Recommendations for “Fairness by design” in UbiComp. Actions to be taken by researchers for performing
fairness assessments in both data and models in UbiComp works. Fairness needs to be considered from the very start of a
project.

than AFib, most likely because its data annotation scheme assigned Normal sinus rhythm (NSR) and other
types of heart rhythms to the same Non-AFib category (i.e., binary classification), due to the limited number of
subjects with different types of heart rhythms [153]. Additionally, datasets in UbiComp are either self-collected
or well-established benchmarks (e.g., those found in the UCI repository11) used to evaluate new models. For
self-collected data, researchers should strive for a diverse representation of human participants in both the
recruitment and the data annotation phase. Considering that the models encode the biases of the labels, they
should not only be assessed by multiple people to ensure agreement but also strive for demographic diversity
amongst them. For benchmark data, researchers should think carefully about the pre-processing stage. Unlike
other fields where the datasets are provided out-of-the-box, in UbiComp, it is not uncommon to require further
slicing or windowing in order to be used for predictive modeling. For example, applying a sliding window method
can generate thousands of samples from a sensor signal that belongs to a single user. This carries the risk of
providing virtually “enough” samples for training, which, however, come from a handful of users. As a result, the
model does not learn generalizable patterns.
As with any data science project, data validation methods play an important role in ensuring the results’

robustness. The same holds true when it comes to fairness. Typical data validation methods, therefore, should also
be applied across sensitive attributes. For example, inspecting outliers that can consistently fall into particular
demographic groups, data that are not missing at random and affect certain groups, or other kinds of data
anomalies (e.g., measurement error due to a device malfunction or device differences). Regarding the latter,
devices such as smartwatches offer model-based estimates for many well-being features. For instance, the
measurement error of a heart-rate prediction model can propagate to every downstream application. If the
original device has not been validated across different groups, this can affect every possible application that

11UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/index.php
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is using such data. More broadly, visualization tools (e.g., What-If Tool12, FairLens13, Tensorflow’s Fairness
Indicators14) may help surface any potential data anomalies and help correct them before they creep into models.

At the same time, the community itself could implement a mandatory data statement policy, requiring authors
to report sensitive attributes concerning their participant samples. This builds on recent quests that advocate for
data excellence [112], for example, by making data statements and datasheets for datasets mandatory for authors
submitting their work.

Model Training and Evaluation. Until recently, most ML-based UbiComp applications employed some sort of
feature engineering in order to extract statistical summaries from sensor data. However, during the past couple of
years, this step has been automated since we have witnessed a remarkable consolidation of deep-learning models
and architectures such as Convolutional Neural Networks [65] and Transformers [131]. As a result, such models
are being used as generic feature extractors for different data types – be it images, text, time-series, or video. A
side effect of this consolidation is that recently proposed mitigation methods can be applied across a wide range
of models, regardless of input data types. For example, one approach modifies the weights of training samples or
changes features and labels based on these attributes [14]. Another approach learns fair representations that
remove correlations between sensitive and non-sensitive attributes [149], while a third approach involves dividing
the training data into subgroups and modifying them to have similar feature distributions across subgroups [32].
Additionally, some methods operate on the latent space of the models by obfuscating information about protected
attributes [149]. Overall, these techniques aim to promote fairness and reduce bias by focusing on various aspects
of data and model architectures.
Yet enhancing fairness in machine learning requires a means to quantify it. As UbiComp systems blend into

the real world, we realize that single evaluation metrics struggle to reflect the success criteria of ML models. As
such, monitoring a multitude of metrics becomes the norm, and this is where we believe that monitoring and
reporting fairness metrics across different groups should become standard practice. However, we acknowledge
that sometimes it might not be feasible to collect data from representative demographics, especially for smaller
pilot studies. In these situations, researchers should aim for a diverse user sample based on assumptions about
relevant sensitive attributes. This approach can help uncover potential biases in the data and models, which can
then be addressed in later stages of development. Alternatively, researchers can leverage advances in generative
models to synthesize data covering multiple sensitive attributes and potential intersections [19].
This is where the concept of intersectional fairness comes in. Intersectional fairness means designing and

training algorithms to account for the complex ways that different social identities can intersect and impact a
person’s experiences and outcomes. UbiComp technologies for diagnosing heart disease and monitoring vital
signs provide an exemplary case. As reports suggest, differences in coronary heart disease are based on gender
[83], socioeconomic status [114], and race [33]. In such cases, it is important to ensure that the models do not
perpetuate existing biases and inequalities by failing to account for intersectional differences in health outcomes
and access to healthcare—the biases encountered by a Black woman from a low socioeconomic background may
not be the same as those experienced by a White woman from a high socioeconomic background.

Beyond traditional notions of fairness, such as directly discriminating based on sensitive attributes, we should
also consider indirect notions of fairness. For example, within the paradigm of distributed/federated learning, the
resource allocation of participating devices may also reflect the demographic and socio-economic information
of owners, which makes the exclusion of such clients unfair in terms of participation. Cheaper devices cannot
support the execution of large models and are either excluded or dropped together with their unique data [22, 51].

12https://pair-code.github.io/what-if-tool/
13https://www.synthesized.io/fairlens
14https://github.com/tensorflow/fairness-indicators
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Last, as models are being deployed in real applications, we should monitor their performance in real time and
adjust for data and fairness drift [42] by ensuring that models produce fair predictions independent of changes in
input data and demographics.

7 CONCLUSION
The field of mobile, wearable and ubiquitous computing (UbiComp) faces significant challenges in ensuring
fairness in the development of ML-based UbiComp technologies. Although efforts have been made to address
biases, only a small percentage of publications in the Proceedings of the ACM IMWUT journal focus on fairness
reporting and enhancement mechanisms. Sensitive attributes such as race, nationality, and language are often
overlooked, while it is evident that there is a need for more diverse sample recruitment to ensure that the benefits
of these technologies are shared equally across all members of society. The lack of a universal fairness definition,
metric, or “fair” threshold that applies to different applications poses a sociotechnical challenge. UbiComp
researchers must be explicit and transparent about their fairness priorities, definitions, and assumptions, making
trade-offs between competing priorities, ethical risks, and opportunities. Despite these challenges, the UbiComp
community strives for “fairer” models by conducting and reporting ablation studies, in-the-wild vs. in-the-lab
experiments, and personalized model development. Ultimately, the UbiComp community must continue to
prioritize fairness to ensure that the development of these technologies leads to just and equitable outcomes.
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