

## Real-time Analytics for Internet of Sports

Marie Curie European Training Network

## One-size-does-NOT-fit-all: Personalized Machine Learning

Yfantidou Sofia, Aristotle University of Thessaloniki (AUTH)

## Let's start with a story...



Overview of the key stages (sensing, perception, and interaction) during robot-assisted autism therapy (Rudovic et al., 2018)



## How different are we?



Clustering of the children from C1 (Japan) and C2 (Serbia) using the t-SNE, an unsupervised dimensionality reduction technique, applied to the auto-encoded features (Rudovic et al., 2018)



## How different are we?



The heat maps of the joint distributions for the valence, arousal, and engagement levels, coded by human experts (Rudovic et al., 2018).



# The Problem with Traditional ML



- Generic models are tuned to an average target population
- "Good" performance doesn't necessarily translate to each individual
- Acceptable in certain domains, but what about health and well-being?



## The Solution: Personalized ML



\* Facilitate: Utilize other users' data till enough data about the individual is collected (cold-start problem)



## Advantages of Personalized ML

- Better performance than generic models for the majority of individuals (Jaques et al., 2017; Suhara et al., 2017; Taylor et al., 2017; Vaizman et al., 2017; Can et al., 2019; Utsumi et al., 2019)
- Has the potential to enable privacy-preserving, personalized ML solutions
- Has the potential to **decrease bias** in ML models for minority populations

Novel, active research topic with growing scientific interest from major institutions (MIT Media Lab and University of Cambridge) and companies (Empatica Wearables, Affectiva)



# Fundamentals: Deep Learning for Personalized ML



## Fundamentals: Multi-task Learning



Source: Thung et al. (2018)

- Subcategory of Transfer Learning
- Knowledge is shared between tasks (shared layers)
- Multiple tasks  $T_1, T_2, T_3...T_n$  are trained jointly
- Target: Minimization of objective for all tasks

## RAIS

## When to use Multi-task Learning

- If you would benefit from shared low-level features
- If you have similar amounts of data for each task
- If you can train a big enough NN to do well on all tasks
- If you have absent labels



## Personalized ML for Mental Wellbeing



Source: <a href="https://www.trendhunter.com/trends/sharing-app">https://www.trendhunter.com/trends/sharing-app</a>



## Where it all started...

### Moodscope (LiKamWa et al., 2013)



Figure 9: Pleasure training accuracy vs. training data size

**Goal:** Mood Inference based on Smartphone Usage Patterns

Model: Multi-linear regression (Personalized, Generic and Hybrid models)

**Max Accuracy:** 

(AUC not reported)

- Generic: 66%
- Personalized: 99%



## Where Deep Learning kicked in...

### DeepMood (Suhara et al., 2017)



**Goal:** Depression forecasting based on self-reports

Model: RNN with hidden LSTM units

AUC-ROC:

• Generic: 88.6%

### What if we combined Personalized ML and Deep Learning?



Predicting tomorrow's mood, health, and stress level using personalized multitask learning and domain adaptation

Jaques et al. (2017)

## Overview

### Goal:

Forecasting a person's mood from passively collected data (wearables and smartphones) and self-reported labels

### **Contributions:**

- Taking advantage of both the data collected from the general population and the individual's data through a **multi-task**, **forward-feed DNN**
- Forecasting instead of detecting a person's mood
- Treating **mood as a regression problem** rather than a binary classification problem
- Provide considerable performance boost for the mood prediction problem



## Model



### Features: Manually designed

- Physiology (skin conductance, temperature, accelerometer; total of 342)
- Location (GPS coordinates; total of 15)
- Phone usage (SMS, calls, screen on/off; total of 75)
- Surveys (sleep, exercise, academic and extracurricular activities, etc.; total of 38)
- Weather (sunlight, temperature, barometric pressure, etc.; total of 40)
- Mood labels (mood and stress in a 1-100 range)

### Task: An individual person

**Training Iteration:** A mini-batch consists of a single person's data and is used to predict the target labels for this person. Errors are back-propagated to update shared and task-specific layers' weights.

## RAIS

## **Results & Limitations**

|              | Model  | Mood | Stress | Health | Total |
|--------------|--------|------|--------|--------|-------|
| Č            | GP     | 16.0 | 17.2   | 16.7   | 16.6  |
| Traditional  | NN     | 15.0 | 17.1   | 16.5   | 16.2  |
|              | DA-GP  | 14.8 | 16.4   | 14.6   | 15.3  |
| Personalized | MTL-NN | 13.0 | 14.1   | 12.9   | 13.3  |

Personalized MTL-NN provided statistically significant better performance (Mean Absolute Error - MAE) for all target labels

### Limitations:

- Cold-start problem; no way to incorporate new users to the MTL-NN
- Small data sample (N=69)
- **High Label requirements**; >15 days of data required for the personalization
- No sequence modeling
- Manual feature design
- Inability to predict far into the future (only one step advance)



# Personalized Multitask Learning for Predicting tomorrow's Mood, Health, and Stress

Taylor et al. (2017)

## Overview

### Goal:

Forecasting a person's mood from passively collected data (wearables and smartphones) and self-reported labels

### **Contributions:**

- Taking advantage of both the data collected from the general population and the individual's data through a **multi-task**, **forward-feed DNN**
- Handling cold-start problem through user clustering (0 labels needed for new users); ability to predict future wellbeing without requiring labels for each person
- Forecasting instead of detecting a person's mood
- Provide considerable performance boost for the mood prediction problem



## Model



### Features: Manually designed

- Physiology (skin conductance, temperature, accelerometer; total of 342)
- Location (GPS coordinates; total of 15)
- Phone usage (SMS, calls, screen on/off; total of 75)
- Surveys (sleep, exercise, academic and extracurricular activities, etc.; total of 38)
- Weather (sunlight, temperature, barometric pressure, etc.; total of 40)
- Mood labels (mood and stress in a 1-100 range)

Task: A cluster of users with similar personality

**Training Iteration:** A mini-batch consists of a single cluster's data and is used to predict the target labels for this cluster. Errors are back-propagated to update shared and task-specific layers' weights.



# **Results & Limitations**

|              | Classifier         | Mood        | Stress      | Health      |
|--------------|--------------------|-------------|-------------|-------------|
| Baseline     | Majority class     | 50.4%, .500 | 50.7%, .500 | 54.4%, .500 |
|              | LSSVM              | 60.2%, .603 | 58.1%, .581 | 62.3%, .614 |
| STL          | LR                 | 56.9%, .569 | 59.4%, .594 | 55.4%, .544 |
|              | NN                 | 60.5%, .606 | 60.1%, .600 | 65.9%, .648 |
|              | NN (all feats)     | 65.8%, .658 | 67.9%, .678 | 59.0%, .591 |
|              | MTMKL              | 59.4%, .594 | 58.8%, .587 | 62.0%, .610 |
| MTL - moods  | HBLR               | 58.3%, .583 | 57.8%, .578 | 55.1%, .551 |
|              | MTL-NN             | 60.2%, .602 | 60.1%, .600 | 65.3%, .643 |
|              | MTL-NN (all feats) | 67.0%, .670 | 68.2%, .682 | 63.0%, .623 |
|              | MTMKL              | 78.7%, .787 | 77.6%, .776 | 78.7%, .786 |
| MTL - people | HBLR               | 72.0%, .720 | 73.4%, .734 | 76.1%, .760 |
|              | MTL NN             | 77.6%, .776 | 78.6%, .785 | 79.7%, .792 |
|              | MTL-NN (all feats) | 78.4%, .784 | 81.5%, .815 | 82.2%, .818 |

Personalized MTL-NN provided AUC-ROC of ~78% for mood prediction compared to ~65% for a generic NN

#### Limitations:

- **Cold-start problem**; new users need to complete a personality scale for the MTL-NN model
- Target variable is **binary**; **removal** of most **ambiguous users**
- Relatively small data sample (N=104)
- No sequence modeling
- Manual feature design
- **Inability to predict** far into the future (only one step advance)

## RAISA

# Sequence Multi-task Learning to Forecast Mental Wellbeing from Sparse Self-reported Data

Spathis et al. (2019)

## Overview

### Goal:

Forecasting a person's future sequences of mood from passively collected data (wearables) and sparse, self-reported labels

### **Contributions:**

- Predicts multiple steps ahead; not just one
- Multi-task learning utilized to predict different dimensions of mood
- Sequence modeling utilized through LSTM units
- Automated feature extraction through seq2seq encoder-decoder model
- **Performance boost** over single-task alternative and traditional ML approaches for the mood prediction domain



## Model



Figure 3: LSTM Encoder-Decoder model. The mood sequence  $(v_1, v_2, v_3)$  passes through an LSTM (states  $W_1$ ), gets transformed to a single vector (dotted) and decoded through another LSTM ( $W_2$ ) that predicts future mood sequences  $(v_4, v_5, v_6)$ . Two fully-connected layers are applied to every time-step of the output (yellow circle), one for valence and one for arousal (purple box).

Task: A dimension (valence/arousal) of affect

Training Iteration: Pass the input through a standard LSTM layer as an Encoder in order to map the past mood into a fixed length representation with the size of the prediction, and then another LSTM layer as a Decoder to reconstruct the original sequence in future steps



## **Results & Limitations**



The MTL model offers statistically significant performance boost in predicting both valence and arousal over the naive baseline, the SVR, and the GBR (p < 0.001).

3 weeks of data offer the best performance; the error increases the more days in the future we are trying to predict

#### Limitations:

- Lack of personalization: Does not explore the concept of personalized ML; potentially could offer greater performance boost
- Lack of baselines: Does not offer comparisons with previous works
- Label requirements: Best results are achieved with 3 weeks of labeled data (sparse)

## RAIS

## **Future Work Directions**

- Personalized ML and Sequence Modeling
- Personalized ML and Algorithmic Bias
- Privacy-preserving Personalized ML
- Personalized ML and Multi-task Learning: The Cold-start Problem
- Interpretability of Personalized ML Models
- Personalized ML: Quantifying Uncertainty
- New sub-domains within the health and wellbeing domain
- Concept Drift Adaptation: Online learning for handling concept drift





## Key takeaways

- In the domain of health and wellbeing, personalized ML can offer a significant performance boost
- Deep Neural Networks are the state-of-the-art in personalized ML, but more exploration is required in the direction of sequence modeling and interpretability
- Multi-task learning and transfer learning have been proposed as a solution to the cold-start problem for new users
- Personalized ML offers a lot of possibilities for exploration in terms of privacy preservation, uncertainty estimation and algorithmic bias





# Bibliography

Can, Y. S., Chalabianloo, N., Ekiz, D., & Ersoy, C. (2019). Continuous stress detection using wearable sensors in real life: Algorithmic programming contest case study. Sensors, 19(8), 1849.

Jaques, N., Taylor, S., Sano, A., & Picard, R. (2017, September). Predicting tomorrow's mood, health, and stress level using personalized multitask learning and domain adaptation. In IJCAI 2017 Workshop on artificial intelligence in affective computing (pp. 17-33). PMLR.

LiKamWa, R., Liu, Y., Lane, N. D., & Zhong, L. (2013, June). Moodscope: Building a mood sensor from smartphone usage patterns. In *Proceeding of the 11th annual international conference on Mobile systems, applications, and services* (pp. 389-402).

Rudovic, O., Lee, J., Dai, M., Schuller, B., & Picard, R. W. (2018). Personalized machine learning for robot perception of affect and engagement in autism therapy. *Science Robotics*, *3*(19).

Spathis, D., Servia-Rodriguez, S., Farrahi, K., Mascolo, C., & Rentfrow, J. (2019, July). Sequence multi-task learning to forecast mental wellbeing from sparse self-reported data. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining* (pp. 2886-2894).

Suhara, Y., Xu, Y., & Pentland, A. S. (2017, April). Deepmood: Forecasting depressed mood based on self-reported histories via recurrent neural networks. In Proceedings of the 26th International Conference on World Wide Web (pp. 715-724).

Taylor, S., Jaques, N., Nosakhare, E., Sano, A., & Picard, R. (2017). Personalized multitask learning for predicting tomorrow's mood, stress, and health. IEEE Transactions on Affective Computing, 11(2), 200-213.

Thung, K. H., & Wee, C. Y. (2018). A brief review on multi-task learning. Multimedia Tools and Applications, 77(22), 29705-29725.

Utsumi, Y., Guerrero, R., Peterson, K., Rueckert, D., & Picard, R. W. (2019, October). Meta-weighted gaussian process experts for personalized forecasting of AD cognitive changes. In Machine learning for healthcare conference (pp. 181-196). PMLR.

Vaizman, Y., Ellis, K., & Lanckriet, G. (2017). Recognizing detailed human context in the wild from smartphones and smartwatches. IEEE pervasive computing, 16(4), 62-74.

Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S.,, & Campbell, A. T. (2014, September). StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In *Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing* (pp. 3-14).



# **Beneficiaries / Partners**

## **BENEFICIARIES**



















UNIVERSITY OF CAMBRIDGE

## Acknowledgement



This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement Innovative Training Networks (ITN) - RAIS No 813162



**Real-time Analytics for Internet of Sports**