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Motivating the problem 

Human activity recognition, Confidence calibration 
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Motivating the problem – Human activity recognition 
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Motivating the problem –Representing 
classification 
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• Mathematically a point estimate is represented as: 

 

 

 

 

 

 

• y = a probability estimate (generated usually by softmax in the last 
layer) 

• argmax(y) = true prediction 

• Most current ML/DL applications follow the above estimation. 

 

• Goal: Classify all the examples correctly (Boost classification metrics). 

 

 

 



Motivating the problem - Issues 
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• Neural network trained to improve upon accuracy: Miscalibrated 
probability estimates at output. 

 

• High probability values towards the predicted class. 
• May not be true representative of the action. 

 

• Prone to produce overconfident wrong estimates. 

 

• Can be unreliable to use in practical applications. 

 

 

 

 

 

 

 

https://algorithmia.com/blog/vertical-spotlight-machine-learning-for-healthcare-diagostics
https://algorithmia.com/blog/vertical-spotlight-machine-learning-for-healthcare-diagostics
https://algorithmia.com/blog/vertical-spotlight-machine-learning-for-healthcare-diagostics
https://algorithmia.com/blog/vertical-spotlight-machine-learning-for-healthcare-diagostics
https://algorithmia.com/blog/vertical-spotlight-machine-learning-for-healthcare-diagostics
https://algorithmia.com/blog/vertical-spotlight-machine-learning-for-healthcare-diagostics
https://algorithmia.com/blog/vertical-spotlight-machine-learning-for-healthcare-diagostics
https://algorithmia.com/blog/vertical-spotlight-machine-learning-for-healthcare-diagostics
https://algorithmia.com/blog/vertical-spotlight-machine-learning-for-healthcare-diagostics
https://algorithmia.com/blog/vertical-spotlight-machine-learning-for-healthcare-diagostics
https://algorithmia.com/blog/vertical-spotlight-machine-learning-for-healthcare-diagostics
https://algorithmia.com/blog/vertical-spotlight-machine-learning-for-healthcare-diagostics
https://algorithmia.com/blog/vertical-spotlight-machine-learning-for-healthcare-diagostics


Motivating the problem - Goal 
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• Calibration problems discussed earlier, but took a backseat until 
recently. 

 

• Explored in context of CV/NLP datasets. 

 

• Relatively underexplored in the context of HAR. 

 

• Goal: Classify human activities accurately and reliable. 

 
• Produce high classification accuracy, f1-score etc. 

 

• Produce well calibrated probability outputs for the predicted example. 
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A little background 

Confidence estimate, Reliability diagrams, Metrics 
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Background – Confidence estimate 
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• Softmax: Transforms unnormalized estimates to normalized 
probabilities -> y 

 

• Classification label: argmax(y) 

 

• Confidence: max(y) -> Indicates how confident you are about your 
predictions. 

 

• Ideal case: 100 predictions each with confidence of 0.8, we expect 80 to 
classified correctly. 



Background – Reliability diagram 
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• To represent calibration/miscalibration visually. 

 



Background – Metrics 
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• Capture reliability in a number. 

 

• Divide into equally spaced bins. 

 

• Calculate average confidence and average accuracy in those bins. 

 

 

 

 

 

 

 



Deep time-ensembles 

Observations, Methods, Overview 
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Observations – 1 & 2 
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• Remembering the goals:  

• Produce high classification in HAR. 

• Produce well calibrated estimates. 

 

• Observations - 1 
• Ensembling a neural network architecture: Improves overall classification 

accuracy. 
• Why? : Reduces the variance of predictive output generated by individual 

stochastic model. 

• It is shown in [1] variance is inversely related to prediction as well as accuracy. 

• Hence ensembles. 

• Observation – 2 
• In HAR problems, selecting a correct window-size is an important 

procedure. 

• Selected empirically through ablation study. 

• Selected adaptively in some cases as well. 

 

 



Deep time ensembles - Methods 
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• Combine both: Boost classification accuracy, improve calibration. 

 

 

 

 

 

 

 

 

 

 

 

 

• Hyperparameter: Window size, interval. 
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Deep time ensembles - Methods 
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• Have multiple window-sizes, multiple overlaps. 

• Create individual models based on those window-size and overlaps. 

• Train an ensemble of those individual models. 

 

 



Proposed Method - Deep time-ensembles 
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Why it works? 

 

 

 

 

 

 

Why time-varying record? 

 

• Explore higher order dependency values in time-series. 

 

• Capture uncertainty trend across time-window. 

 

• Broadened exploration capacity. 
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Why it works? 

 

 

 

 

 

Why ensembles? 

 

• Averaging process gets rid of uncertainty introduced by 
hyperparameters. 

• Promotes coherent uncertainty.  

• Boosts classification and calibration by reducing variance of 
predictions. 

• Softens the softmax at output. 

• Prediction conformity is obtained. 
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Deep time ensembles 
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• Remembering the goals:  

• Produce high classification in HAR. 

• Produce well calibrated estimates. 

 

• Observations - 1 
• Ensembling a neural network architecture: Improves overall classification 

accuracy. 
• Why? : Reduces the variance of predictive output generated by individual 

stochastic model. 

• It is shown in [1] variance is inversely related to prediction as well as accuracy. 

• Hence ensembles. 

• Observation – 2 
• In HAR problems, selecting a correct window-size is an important 

procedure. 

• Selected empirically through ablation study. 

• Selected adaptively in some cases as well. 

 

 



Caveats 
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• Expected good models for ensembling. 
• Bad models for downstream task reduces classification accuracy. 

• Increased computation time due to ensembling. 



Deep time ensembles - Overview 
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Results 

Dataset and architectures, Classification Results, 
Reliability diagrams 
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Results - Dataset and architectures 

• Tested across 4 datasets: UCI, WISDM, PAMAP2, Skoda. 

 

 

 

 

 

 

• Neural network architectures 
• LSTM, CNN, CNN-LSTM 
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Dataset Activity No. Of Classes 

WISDM Motion activity and static 6 

UCI Motion activity and static 6 

PAMAP2 Sporting motion activities 12 

Skoda Car assembly factories 12 



Results – Classification and calibration 
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Dataset Architecture Standard Standard + 

temp 

DTE DTE + temp 

UCI CNN 

LSTM 

WISDM CNN 

LSTM 

PAMAP2 CNN 

LSTM 

SKODA ConvLSTM 



Results – Comparison with SOTA 
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Dataset Architecture Standard Standard + 

temp 

DTE DTE + temp 

UCI CNN 

LSTM 

WISDM CNN 

LSTM 

PAMAP2 CNN 

LSTM 

SKODA ConvLSTM 



Results – Reliability diagrams 
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Future works 
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Research: Ongoing and future works. 

• Distill ensemble models. 

• Explore confidence calibrated loss functions. 

• Explore across range of other datasets. 

• Integrate uncertainty factor. 
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THANK YOU! 


