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Introduction

Motivation

- Smart contracts inherit some undesirable blockchain properties;
- Existing smart contract systems thus lack confidentiality or privacy;
- Blockchain consensus requirements also hamper smart contracts with poor 

performance.

Problem Statement

Design a platform for confidential and performant smart contracts’ execution.
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Background
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Smart Contracts and Blockchains

- Smart Contracts are programs executed by a network of participants who 
reach agreement on the programs’ state;

- Full replication on all nodes provides a high level of fault tolerance and 
availability;

- On-chain computation of fully replicated smart contracts is inherently 
expensive;

- Contract state and user input must be public in order for miners to verify 
correct computation.

⇒ Lack of privacy.
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Trusted Hardware with Attestation

- A trusted execution environment (TEE) protects the confidentiality and 
integrity of computations;

- A TEE  can issue proofs, known as attestations, of computation correctness;
- Intel SGX provides a CPU-based implementation of TEEs—known as enclaves 

in SGX—for general-purpose computation;
- It is infeasible for any entity other than an SGX platform to generate any 

attestation;
- SGX alone cannot guarantee availability: a malicious host can terminate 

enclaves or drop messages arbitrarily.

⇒ Lack of availability.
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Challenges
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Tolerating TEE Failures

- Availability failures
- A malicious host can terminate enclaves, and even an honest host could lose enclaves in a 

power cycle.
- Side channels

- Recent work has uncovered data leakage via side channel attacks;
- Existing defenses are generally application and attack-specific;
- It is still desirable to limit the impact of compromised TEEs.

- Timer failures
- TEEs in general lack trusted time sources;
- Although a trusted relative timer is available, the communication between enclaves and the 

timer can be delayed by the OS.
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Proof of Publication for PoW blockchains

- A TEE must be able to efficiently verify that an item has been stored
- in the blockchain.
- Such a proof can consist of signatures from a quorum of consensus nodes 

(Permissioned Blockchain).
- TEEs must be able to validate new blocks (Permissionless Blockchain).

- A trusted timer is needed to defend against an adversary isolating an enclave and presenting 
an invalid subchain.

- An attacker delaying a timer’s responses cannot prevent an enclave from 
successfully verifying blockchain contents given trust in, e.g. TLS-enabled 
NTP servers.

10



Atomic Delivery of Execution Results

- Atomicity of executions namely either both executions exc1, exc2 finish or 
none of them;

- TEE cannot tell whether an input state is fresh, an attacker can provide stale 
states to resume a TEE’s execution from an old state;

- An attacker may repeatedly rewind until receiving the desired output;
- Another example is that rewinding could defeat budget based privacy protection, such as 

differential privacy.
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Ekiden
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Cheng, Raymond, et al. "Ekiden: A platform for confidentiality-preserving, trustworthy, and performant smart contracts." 2019 IEEE European Symposium 
on Security and Privacy (EuroS&P). IEEE, 2019.



Overview

- Clients are end users of smart 
contracts; 

- A client can create contracts or 
execute existing ones with secret 
input.

- Compute nodes process 
requests from clients by running 
the contract in a contract TEE 
and generating attestations 
proving the correctness of state 
updates.
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Figure 1: Ekiden Overview



Overview (Cont’d)

- Consensus nodes maintain a 
distributed append-only ledger 
by running a consensus protocol;

- Contract state and attestations 
are persisted on the blockchain;

- Consensus nodes are 
responsible for checking the 
validity of state updates using 
TEE attestations.
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Figure 1: Ekiden Overview



Overview (Cont’d)

- Ekiden decouples request 
execution from consensus;

- A request is only executed by K 
compute nodes (possibly K=1);

- Proof of correct execution takes 
the form of a signature. 

- Consensus nodes do not need 
neither trusted hardware nor to 
contact the IAS to verify it.
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Figure 1: Ekiden Overview



Security Goals

- Correct execution: 
- Contract state transitions reflect correct execution of contract code on given state and inputs.

- Consistency: 
- At any time, the blockchain stores a single sequence of state transitions consistent with the 

view of each compute node.
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Security Goals (Cont’d)

- Secrecy: 
- Ekiden guarantees that contract state and inputs from honest clients are kept secret from all 

other parties (without any TEE breach);
- Ekiden is resilient to some key-manager TEEs being breached.

- Graceful confidentiality degradation: 
- Should a confidentiality breach occur in a computation node, Ekiden provides forward secrecy 

and reasonable isolation from the affected TEEs.

⇒  Ekiden does not prevent contract-level leakage (e.g. through covert channels, 
bugs or side channels).
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Evaluation

- Use cases:
- Machine Learning Contracts (predicting the likelihood of heart disease based on medical 

records)
- Smart Building Thermal Modeling (an implementation of non-linear least squares, which is 

used to predict temperatures based on time series thermal data from smart buildings).
- Tokens (an implementation in Rust of an ERC20 Token);
- Poker (a contract where users take turns submitting their actions to the contract, and the 

smart contract contains all of the game logic for shuffling and (selectively) revealing cards);
- CryptoKitties (an Ethereum game that allows users to breed virtual cats, which are stored on 

chain as ERC721 tokens).
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Evaluation
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Figure 2: End-to-end latency of client requests for various contracts. Figure 3: Throughput comparison across contracts and systems.



Other Approaches
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ZKP-based Approaches: Hawk

- Hawk  has  strong  privacy  goals  that  include :
- Hiding  the  amounts  and  transacting  parties  of  monetary transfers;
- Hiding  contract  state  from  non-participants;
- Supporting private inputs that are hidden even from other participants in the contract.

- It suffers from some limitations:
- SNARKs require a per-circuit trusted setup, which means that for every distinct program that a 

contract implements, a new trusted setup is required;
- Each contract requires kilobytes of data to be put on-chain;
- Privacy in Hawk relies on trusting a third-party manager who gets to see all the private data.
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Kosba, Ahmed, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. 2016. “Hawk: The Blockchain Model of Cryptography and 
Privacy-Preserving Smart Contracts.” In 2016 IEEE Symposium on Security and Privacy (SP), 839–58. ieeexplore.ieee.org.



Secure MPC-based Approaches: Enigma

- Secure multi-party computation is a cryptographic technique that allows 
parties to compute functions on private inputs without learning anything but 
their output.

- This  enables  attaching monetary conditions to the outcome of computations 
and incentivizing fairness (by penalizing aborting parties).

- MPC based systems require the active (and interactive) participation of all  
computing nodes.

- The cryptographic tools impose a significant efficiency burden.

22
Zyskind, G., Nathan, O., & Pentland, A. (2015). Enigma: Decentralized computation platform with guaranteed privacy. arXiv preprint arXiv:1506.03471.



Off-chain Approaches: Arbitrum

- Smart contracts are considered as VMs.
- Execution verification is only launched in case of a dispute (challenge-based 

verification).
- The challenger and the entity that run the VM deposit a stake.
- The verifiers need to check only specific instructions.
- Whoever fails loses deposit, half for the winner and the other half for the 

verifier.
- It is consensus agnostic. 
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Kalodner, Harry, et al. "Arbitrum: Scalable, private smart contracts." 27th {USENIX} Security Symposium ({USENIX} Security 18). 2018.



Existing 
Technologies
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HF Private Chaincode

- Hyperledger Fabric Private Chaincode (FPC) enables the execution of 
chaincodes using Intel SGX for Hyperledger Fabric.

- It allows to write chaincode applications where the data is encrypted on the 
ledger and can only be accessed in clear by authorized parties [2].
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Hyperledger PDOs

- Private Data Objects (PDO) enables sharing of data and coordinating action 
amongst mutually distrusting parties;

- Interaction is mediated through a “smart contract” that defines data access 
and update policies;

- The smart contracts policies are enforced through execution in a Trusted 
Execution Environment (TEE);

- PDOs use Hyperledger Sawtooth distributed ledger [3].
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Microsoft CCF

- Confidential Consortium Framework (CCF) is an open-source framework for 
building a new category of secure, highly available, and performant 
applications that focus on multi-party compute and data;

- CCF leverages trust in a consortium of governing members and in a network 
of replicated hardware-protected execution environments to achieve high 
throughput, low latency, strong integrity and strong confidentiality [4]. 
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Conclusion

- Smart contracts lack privacy and TEEs lack availability;
- TEE and Blockchain are complementary;
- Usage of TEE in blockchain improves performance and preserves privacy;
- There are current PoC developed by various companies like Hyperledger 

(PDOs, HF Private Chaincodes), Microsoft (CCF), and Oasis Labs (Ekiden).
- Other approaches that involve different techniques like ZKP, MCP, and 

off-chain evaluation were proposed.
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Thank you!
Any question?
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